Suparious commited on
Commit
2050c3d
·
verified ·
1 Parent(s): 018df8a

Update model card

Browse files
Files changed (1) hide show
  1. README.md +68 -10
README.md CHANGED
@@ -1,4 +1,24 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  base_model: senseable/WestLake-7B-v2
3
  license: apache-2.0
4
  language:
@@ -34,6 +54,54 @@ This repo contains AWQ model files for [Common Sense's WestLake 7B v2](https://h
34
 
35
  These files were quantised using hardware kindly provided by [SolidRusT Networks](https://solidrust.net/).
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  ### About AWQ
38
 
39
  AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
@@ -57,13 +125,3 @@ It is supported by:
57
  {prompt}<|im_end|>
58
  <|im_start|>assistant
59
  ```
60
-
61
- Also working with Basic Mistral format:
62
-
63
- ```plaintext
64
- <|system|>
65
- </s>
66
- <|user|>
67
- {prompt}</s>
68
- <|assistant|>
69
- ```
 
1
  ---
2
+ tags:
3
+ - finetuned
4
+ - quantized
5
+ - 4-bit
6
+ - AWQ
7
+ - transformers
8
+ - pytorch
9
+ - mistral
10
+ - instruct
11
+ - text-generation
12
+ - conversational
13
+ - license:apache-2.0
14
+ - autotrain_compatible
15
+ - endpoints_compatible
16
+ - text-generation-inference
17
+ - finetune
18
+ - chatml
19
+ model-index:
20
+ - name: WestLake-7B-v2
21
+ results: []
22
  base_model: senseable/WestLake-7B-v2
23
  license: apache-2.0
24
  language:
 
54
 
55
  These files were quantised using hardware kindly provided by [SolidRusT Networks](https://solidrust.net/).
56
 
57
+ ## How to use
58
+
59
+ ### Install the necessary packages
60
+
61
+ ```bash
62
+ pip install --upgrade autoawq autoawq-kernels
63
+ ```
64
+
65
+ ### Example Python code
66
+
67
+ ```python
68
+ from awq import AutoAWQForCausalLM
69
+ from transformers import AutoTokenizer, TextStreamer
70
+
71
+ model_path = "solidrust/WestLake-7B-v2-AWQ"
72
+ system_message = "You are Senzu, incarnated as a powerful AI."
73
+
74
+ # Load model
75
+ model = AutoAWQForCausalLM.from_quantized(model_path,
76
+ fuse_layers=True)
77
+ tokenizer = AutoTokenizer.from_pretrained(model_path,
78
+ trust_remote_code=True)
79
+ streamer = TextStreamer(tokenizer,
80
+ skip_prompt=True,
81
+ skip_special_tokens=True)
82
+
83
+ # Convert prompt to tokens
84
+ prompt_template = """\
85
+ <|im_start|>system
86
+ {system_message}<|im_end|>
87
+ <|im_start|>user
88
+ {prompt}<|im_end|>
89
+ <|im_start|>assistant"""
90
+
91
+ prompt = "You're standing on the surface of the Earth. "\
92
+ "You walk one mile south, one mile west and one mile north. "\
93
+ "You end up exactly where you started. Where are you?"
94
+
95
+ tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
96
+ return_tensors='pt').input_ids.cuda()
97
+
98
+ # Generate output
99
+ generation_output = model.generate(tokens,
100
+ streamer=streamer,
101
+ max_new_tokens=512)
102
+
103
+ ```
104
+
105
  ### About AWQ
106
 
107
  AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
 
125
  {prompt}<|im_end|>
126
  <|im_start|>assistant
127
  ```