File size: 1,231 Bytes
cf6ad28
5f21d73
cf6ad28
5f21d73
 
cf6ad28
5f21d73
 
 
 
 
 
 
cf6ad28
5f21d73
 
 
 
 
cf6ad28
5f21d73
 
1a38637
5f21d73
 
 
 
 
 
 
 
2683255
 
 
5f21d73
 
 
 
 
cf6ad28
 
5f21d73
cf6ad28
 
 
5f21d73
cf6ad28
5f21d73
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
from tokenizers import Tokenizer

llama3_tokenizer = Tokenizer.from_file("tokenizer-llama3.json")
deepseek_coder_tokenizer = Tokenizer.from_file("tokenizer-deepseek-coder.json")

def get_tokenizer(model):
    tokenizer_mapping = {
        "meta-llama/Meta-Llama-3-8B-Instruct": llama3_tokenizer, 
        "deepseek-ai/deepseek-coder-7b-instruct-v1.5": deepseek_coder_tokenizer
    }
    if model not in tokenizer_mapping:
        raise Exception(f"Model {model} not supported.")

    return tokenizer_mapping[model]

def count_tokens(
    model,
    target_text,
):
    tokenizer = get_tokenizer(model)
    toks = tokenizer.encode(target_text)
    yield f"Token count: {len(toks.ids)}"

demo = gr.Interface(
    fn=count_tokens,
    inputs=[
        gr.Dropdown(
            [
                "meta-llama/Meta-Llama-3-8B-Instruct", 
                "deepseek-ai/deepseek-coder-7b-instruct-v1.5", 
            ], 
            value="meta-llama/Meta-Llama-3-8B-Instruct",
            label="Model"
        ),
        gr.Textbox(
            label="Input",
            info="Text to count tokens for",
            lines=10,
        ),
    ],
    outputs=["text"],
)



if __name__ == "__main__":
    demo.launch()