File size: 14,054 Bytes
2a5f9fb
95f85ed
58733e4
 
8c49cb6
d313dbd
58733e4
8c49cb6
6fefae4
0227006
 
 
eaace79
 
d2e8eca
8c49cb6
6e8f400
d313dbd
eaace79
 
6e56e0d
eaace79
 
d313dbd
 
6e56e0d
699e8ff
 
d313dbd
 
7abc6a7
6e8f400
58733e4
 
 
e3aaf53
 
 
 
58733e4
8c49cb6
58733e4
d2e8eca
d313dbd
256c5d3
 
2a5f9fb
256c5d3
 
d313dbd
788108a
d2e8eca
 
 
8c49cb6
d2e8eca
 
 
d16cee2
 
 
6095833
e3aaf53
 
 
 
 
 
 
7abc6a7
d16cee2
d313dbd
12cea14
 
 
d313dbd
 
8c49cb6
d313dbd
 
 
 
 
 
 
 
 
 
 
 
 
8c49cb6
b323764
d313dbd
 
 
 
 
 
 
 
b323764
d313dbd
 
 
 
8c49cb6
 
d16cee2
58733e4
2a73469
 
217b585
 
216309b
2a73469
 
 
d06dc21
e61a555
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c49cb6
e61a555
 
 
 
 
 
 
8c49cb6
e61a555
 
 
 
 
 
 
8c49cb6
e61a555
 
 
 
 
 
 
8c49cb6
e61a555
 
 
 
 
e3aaf53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d313dbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from src.display.utils import ModelType

TITLE = """<h1 align="center" id="space-title">🤗 Open LLM Leaderboard</h1>"""

INTRODUCTION_TEXT = """
📐 The 🤗 Open LLM Leaderboard aims to track, rank and evaluate open LLMs and chatbots.

🤗 Submit a model for automated evaluation on the 🤗 GPU cluster on the "Submit" page!
The leaderboard's backend runs the great [Eleuther AI Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) - read more details in the "About" page!
"""

LLM_BENCHMARKS_TEXT = f"""
Useful links: [FAQ](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/179), [Community resources](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/discussions/174), [Collection of best models](https://huggingface.co/collections/open-llm-leaderboard/llm-leaderboard-best-models-652d6c7965a4619fb5c27a03).

# Context
With the plethora of large language models (LLMs) and chatbots being released week upon week, often with grandiose claims of their performance, it can be hard to filter out the genuine progress that is being made by the open-source community and which model is the current state of the art.

## Icons
- {ModelType.PT.to_str(" : ")} model: new, base models, trained on a given corpora
- {ModelType.FT.to_str(" : ")} model: pretrained models finetuned on more data
Specific fine-tune subcategories (more adapted to chat):
- {ModelType.IFT.to_str(" : ")} model: instruction fine-tunes, which are model fine-tuned specifically on datasets of task instruction 
- {ModelType.RL.to_str(" : ")} model: reinforcement fine-tunes, which usually change the model loss a bit with an added policy. 
If there is no icon, we have not uploaded the information on the model yet, feel free to open an issue with the model information!

"Flagged" indicates that this model has been flagged by the community, and should probably be ignored! Clicking the link will redirect you to the discussion about the model.
(For ex, the model was trained on the evaluation data, and is therefore cheating on the leaderboard.)

## How it works

📈 We evaluate models on 7 key benchmarks using the <a href="https://github.com/EleutherAI/lm-evaluation-harness" target="_blank">  Eleuther AI Language Model Evaluation Harness </a>, a unified framework to test generative language models on a large number of different evaluation tasks.

- <a href="https://arxiv.org/abs/1803.05457" target="_blank">  AI2 Reasoning Challenge </a> (25-shot) - a set of grade-school science questions.
- <a href="https://arxiv.org/abs/1905.07830" target="_blank">  HellaSwag </a> (10-shot) - a test of commonsense inference, which is easy for humans (~95%) but challenging for SOTA models.
- <a href="https://arxiv.org/abs/2009.03300" target="_blank">  MMLU </a>  (5-shot) - a test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more.
- <a href="https://arxiv.org/abs/2109.07958" target="_blank">  TruthfulQA </a> (0-shot) - a test to measure a model's propensity to reproduce falsehoods commonly found online. Note: TruthfulQA in the Harness is actually a minima a 6-shots task, as it is prepended by 6 examples systematically, even when launched using 0 for the number of few-shot examples.
- <a href="https://arxiv.org/abs/1907.10641" target="_blank">  Winogrande </a> (5-shot) - an adversarial and difficult Winograd benchmark at scale, for commonsense reasoning.
- <a href="https://arxiv.org/abs/2110.14168" target="_blank">  GSM8k </a> (5-shot) - diverse grade school math word problems to measure a model's ability to solve multi-step mathematical reasoning problems.
- <a href="https://arxiv.org/abs/1903.00161" target="_blank">  DROP </a> (3-shot) - English reading comprehension benchmark requiring Discrete Reasoning Over the content of Paragraphs.

For all these evaluations, a higher score is a better score.
We chose these benchmarks as they test a variety of reasoning and general knowledge across a wide variety of fields in 0-shot and few-shot settings.

## Details and logs
You can find:
- detailed numerical results in the `results` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/results
- details on the input/outputs for the models in the `details` of each model, that you can access by clicking the 📄 emoji after the model name
- community queries and running status in the `requests` Hugging Face dataset: https://huggingface.co/datasets/open-llm-leaderboard/requests

## Reproducibility
To reproduce our results, here is the commands you can run, using [this version](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463) of the Eleuther AI Harness:
`python main.py --model=hf-causal --model_args="pretrained=<your_model>,use_accelerate=True,revision=<your_model_revision>"`
` --tasks=<task_list> --num_fewshot=<n_few_shot> --batch_size=2 --output_path=<output_path>`

The total batch size we get for models which fit on one A100 node is 16 (8 GPUs * 2). If you don't use parallelism, adapt your batch size to fit.
*You can expect results to vary slightly for different batch sizes because of padding.*

The tasks and few shots parameters are:
- ARC: 25-shot, *arc-challenge* (`acc_norm`)
- HellaSwag: 10-shot, *hellaswag* (`acc_norm`)
- TruthfulQA: 0-shot, *truthfulqa-mc* (`mc2`)
- MMLU: 5-shot, *hendrycksTest-abstract_algebra,hendrycksTest-anatomy,hendrycksTest-astronomy,hendrycksTest-business_ethics,hendrycksTest-clinical_knowledge,hendrycksTest-college_biology,hendrycksTest-college_chemistry,hendrycksTest-college_computer_science,hendrycksTest-college_mathematics,hendrycksTest-college_medicine,hendrycksTest-college_physics,hendrycksTest-computer_security,hendrycksTest-conceptual_physics,hendrycksTest-econometrics,hendrycksTest-electrical_engineering,hendrycksTest-elementary_mathematics,hendrycksTest-formal_logic,hendrycksTest-global_facts,hendrycksTest-high_school_biology,hendrycksTest-high_school_chemistry,hendrycksTest-high_school_computer_science,hendrycksTest-high_school_european_history,hendrycksTest-high_school_geography,hendrycksTest-high_school_government_and_politics,hendrycksTest-high_school_macroeconomics,hendrycksTest-high_school_mathematics,hendrycksTest-high_school_microeconomics,hendrycksTest-high_school_physics,hendrycksTest-high_school_psychology,hendrycksTest-high_school_statistics,hendrycksTest-high_school_us_history,hendrycksTest-high_school_world_history,hendrycksTest-human_aging,hendrycksTest-human_sexuality,hendrycksTest-international_law,hendrycksTest-jurisprudence,hendrycksTest-logical_fallacies,hendrycksTest-machine_learning,hendrycksTest-management,hendrycksTest-marketing,hendrycksTest-medical_genetics,hendrycksTest-miscellaneous,hendrycksTest-moral_disputes,hendrycksTest-moral_scenarios,hendrycksTest-nutrition,hendrycksTest-philosophy,hendrycksTest-prehistory,hendrycksTest-professional_accounting,hendrycksTest-professional_law,hendrycksTest-professional_medicine,hendrycksTest-professional_psychology,hendrycksTest-public_relations,hendrycksTest-security_studies,hendrycksTest-sociology,hendrycksTest-us_foreign_policy,hendrycksTest-virology,hendrycksTest-world_religions* (average of all the results `acc`)
- Winogrande: 5-shot, *winogrande* (`acc`)
- GSM8k: 5-shot, *gsm8k* (`acc`)
- DROP: 3-shot, *drop* (`f1`)

Side note on the baseline scores: 
- for log-likelihood evaluation, we select the random baseline
- for DROP, we select the best submission score according to [their leaderboard](https://leaderboard.allenai.org/drop/submissions/public) when the paper came out (NAQANet score)
- for GSM8K, we select the score obtained in the paper after finetuning a 6B model on the full GSM8K training set for 50 epochs

## Quantization
To get more information about quantization, see:
- 8 bits: [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), [paper](https://arxiv.org/abs/2208.07339)
- 4 bits: [blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes), [paper](https://arxiv.org/abs/2305.14314)
"""

EVALUATION_QUEUE_TEXT = """
# Evaluation Queue for the 🤗 Open LLM Leaderboard

Models added here will be automatically evaluated on the 🤗 cluster.

## Some good practices before submitting a model

### 1) Make sure you can load your model and tokenizer using AutoClasses:
```python
from transformers import AutoConfig, AutoModel, AutoTokenizer
config = AutoConfig.from_pretrained("your model name", revision=revision)
model = AutoModel.from_pretrained("your model name", revision=revision)
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
```
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.

Note: make sure your model is public!
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!

### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!

### 3) Make sure your model has an open license!
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗

### 4) Fill up your model card
When we add extra information about models to the leaderboard, it will be automatically taken from the model card

## In case of model failure
If your model is displayed in the `FAILED` category, its execution stopped.
Make sure you have followed the above steps first.
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
"""

CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
CITATION_BUTTON_TEXT = r"""
@misc{open-llm-leaderboard,
  author = {Edward Beeching and Clémentine Fourrier and Nathan Habib and Sheon Han and Nathan Lambert and Nazneen Rajani and Omar Sanseviero and Lewis Tunstall and Thomas Wolf},
  title = {Open LLM Leaderboard},
  year = {2023},
  publisher = {Hugging Face},
  howpublished = "\url{https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard}"
}
@software{eval-harness,
  author       = {Gao, Leo and
                  Tow, Jonathan and
                  Biderman, Stella and
                  Black, Sid and
                  DiPofi, Anthony and
                  Foster, Charles and
                  Golding, Laurence and
                  Hsu, Jeffrey and
                  McDonell, Kyle and
                  Muennighoff, Niklas and
                  Phang, Jason and
                  Reynolds, Laria and
                  Tang, Eric and
                  Thite, Anish and
                  Wang, Ben and
                  Wang, Kevin and
                  Zou, Andy},
  title        = {A framework for few-shot language model evaluation},
  month        = sep,
  year         = 2021,
  publisher    = {Zenodo},
  version      = {v0.0.1},
  doi          = {10.5281/zenodo.5371628},
  url          = {https://doi.org/10.5281/zenodo.5371628}
}
@misc{clark2018think,
      title={Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge},
      author={Peter Clark and Isaac Cowhey and Oren Etzioni and Tushar Khot and Ashish Sabharwal and Carissa Schoenick and Oyvind Tafjord},
      year={2018},
      eprint={1803.05457},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}
@misc{zellers2019hellaswag,
      title={HellaSwag: Can a Machine Really Finish Your Sentence?},
      author={Rowan Zellers and Ari Holtzman and Yonatan Bisk and Ali Farhadi and Yejin Choi},
      year={2019},
      eprint={1905.07830},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{hendrycks2021measuring,
      title={Measuring Massive Multitask Language Understanding},
      author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
      year={2021},
      eprint={2009.03300},
      archivePrefix={arXiv},
      primaryClass={cs.CY}
}
@misc{lin2022truthfulqa,
      title={TruthfulQA: Measuring How Models Mimic Human Falsehoods},
      author={Stephanie Lin and Jacob Hilton and Owain Evans},
      year={2022},
      eprint={2109.07958},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-1907-10641,
      title={{WINOGRANDE:} An Adversarial Winograd Schema Challenge at Scale},
      author={Keisuke Sakaguchi and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
      year={2019},
      eprint={1907.10641},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-2110-14168,
      title={Training Verifiers to Solve Math Word Problems},
      author={Karl Cobbe and
                  Vineet Kosaraju and
                  Mohammad Bavarian and
                  Mark Chen and
                  Heewoo Jun and
                  Lukasz Kaiser and
                  Matthias Plappert and
                  Jerry Tworek and
                  Jacob Hilton and
                  Reiichiro Nakano and
                  Christopher Hesse and
                  John Schulman},
      year={2021},
      eprint={2110.14168},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
@misc{DBLP:journals/corr/abs-1903-00161,
      title={{DROP:} {A} Reading Comprehension Benchmark Requiring Discrete Reasoning
                  Over Paragraphs},
      author={Dheeru Dua and
                  Yizhong Wang and
                  Pradeep Dasigi and
                  Gabriel Stanovsky and
                  Sameer Singh and
                  Matt Gardner},
      year={2019},
      eprinttype={arXiv},
      eprint={1903.00161},
      primaryClass={cs.CL}
}"""