File size: 9,751 Bytes
21231ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This code is based on https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
Ths copyright of pytorch/pytorch is a BSD-style license, as found in the LICENSE file.
"""
import math
import numpy as np
import paddle
import paddle.nn as nn
__all__ = [
"uniform_",
"normal_",
"constant_",
"ones_",
"zeros_",
"xavier_uniform_",
"xavier_normal_",
"kaiming_uniform_",
"kaiming_normal_",
"linear_init_",
"conv_init_",
"reset_initialized_parameter",
]
def _no_grad_uniform_(tensor, a, b):
with paddle.no_grad():
tensor.set_value(paddle.uniform(shape=tensor.shape, dtype=tensor.dtype, min=a, max=b))
return tensor
def _no_grad_normal_(tensor, mean=0.0, std=1.0):
with paddle.no_grad():
tensor.set_value(paddle.normal(mean=mean, std=std, shape=tensor.shape))
return tensor
def _no_grad_fill_(tensor, value=0.0):
with paddle.no_grad():
tensor.set_value(paddle.full_like(tensor, value, dtype=tensor.dtype))
return tensor
def uniform_(tensor, a, b):
"""
Modified tensor inspace using uniform_
Args:
tensor (paddle.Tensor): paddle Tensor
a (float|int): min value.
b (float|int): max value.
Return:
tensor
"""
return _no_grad_uniform_(tensor, a, b)
def normal_(tensor, mean=0.0, std=1.0):
"""
Modified tensor inspace using normal_
Args:
tensor (paddle.Tensor): paddle Tensor
mean (float|int): mean value.
std (float|int): std value.
Return:
tensor
"""
return _no_grad_normal_(tensor, mean, std)
def constant_(tensor, value=0.0):
"""
Modified tensor inspace using constant_
Args:
tensor (paddle.Tensor): paddle Tensor
value (float|int): value to fill tensor.
Return:
tensor
"""
return _no_grad_fill_(tensor, value)
def ones_(tensor):
"""
Modified tensor inspace using ones_
Args:
tensor (paddle.Tensor): paddle Tensor
Return:
tensor
"""
return _no_grad_fill_(tensor, 1)
def zeros_(tensor):
"""
Modified tensor inspace using zeros_
Args:
tensor (paddle.Tensor): paddle Tensor
Return:
tensor
"""
return _no_grad_fill_(tensor, 0)
def vector_(tensor, vector):
with paddle.no_grad():
tensor.set_value(paddle.to_tensor(vector, dtype=tensor.dtype))
return tensor
def _calculate_fan_in_and_fan_out(tensor, reverse=False):
"""
Calculate (fan_in, _fan_out) for tensor
Args:
tensor (Tensor): paddle.Tensor
reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. e.g. : conv.weight [cout, cin, kh, kw] is False; linear.weight [cin, cout] is True
Return:
Tuple[fan_in, fan_out]
"""
if tensor.ndim < 2:
raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")
if reverse:
num_input_fmaps, num_output_fmaps = tensor.shape[0], tensor.shape[1]
else:
num_input_fmaps, num_output_fmaps = tensor.shape[1], tensor.shape[0]
receptive_field_size = 1
if tensor.ndim > 2:
receptive_field_size = np.prod(tensor.shape[2:])
fan_in = num_input_fmaps * receptive_field_size
fan_out = num_output_fmaps * receptive_field_size
return fan_in, fan_out
def xavier_uniform_(tensor, gain=1.0, reverse=False):
"""
Modified tensor inspace using xavier_uniform_
Args:
tensor (paddle.Tensor): paddle Tensor
gain (float): super parameter, 1. default.
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
Return:
tensor
"""
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
k = math.sqrt(3.0) * std
return _no_grad_uniform_(tensor, -k, k)
def xavier_normal_(tensor, gain=1.0, reverse=False):
"""
Modified tensor inspace using xavier_normal_
Args:
tensor (paddle.Tensor): paddle Tensor
gain (float): super parameter, 1. default.
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
Return:
tensor
"""
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
return _no_grad_normal_(tensor, 0, std)
# reference: https://pytorch.org/docs/stable/_modules/torch/nn/init.html
def _calculate_correct_fan(tensor, mode, reverse=False):
mode = mode.lower()
valid_modes = ["fan_in", "fan_out"]
if mode not in valid_modes:
raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse)
return fan_in if mode == "fan_in" else fan_out
def _calculate_gain(nonlinearity, param=None):
linear_fns = ["linear", "conv1d", "conv2d", "conv3d", "conv_transpose1d", "conv_transpose2d", "conv_transpose3d"]
if nonlinearity in linear_fns or nonlinearity == "sigmoid":
return 1
elif nonlinearity == "tanh":
return 5.0 / 3
elif nonlinearity == "relu":
return math.sqrt(2.0)
elif nonlinearity == "leaky_relu":
if param is None:
negative_slope = 0.01
elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
# True/False are instances of int, hence check above
negative_slope = param
else:
raise ValueError("negative_slope {} not a valid number".format(param))
return math.sqrt(2.0 / (1 + negative_slope**2))
elif nonlinearity == "selu":
return 3.0 / 4
else:
raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))
def kaiming_uniform_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False):
"""
Modified tensor inspace using kaiming_uniform method
Args:
tensor (paddle.Tensor): paddle Tensor
mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
nonlinearity (str): nonlinearity method name
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
Return:
tensor
"""
fan = _calculate_correct_fan(tensor, mode, reverse)
gain = _calculate_gain(nonlinearity, a)
std = gain / math.sqrt(fan)
k = math.sqrt(3.0) * std
return _no_grad_uniform_(tensor, -k, k)
def kaiming_normal_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False):
"""
Modified tensor inspace using kaiming_normal_
Args:
tensor (paddle.Tensor): paddle Tensor
mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
nonlinearity (str): nonlinearity method name
reverse (bool): reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
Return:
tensor
"""
fan = _calculate_correct_fan(tensor, mode, reverse)
gain = _calculate_gain(nonlinearity, a)
std = gain / math.sqrt(fan)
return _no_grad_normal_(tensor, 0, std)
def linear_init_(module):
bound = 1 / math.sqrt(module.weight.shape[0])
uniform_(module.weight, -bound, bound)
uniform_(module.bias, -bound, bound)
def conv_init_(module):
bound = 1 / np.sqrt(np.prod(module.weight.shape[1:]))
uniform_(module.weight, -bound, bound)
if module.bias is not None:
uniform_(module.bias, -bound, bound)
def bias_init_with_prob(prior_prob=0.01):
"""initialize conv/fc bias value according to a given probability value."""
bias_init = float(-np.log((1 - prior_prob) / prior_prob))
return bias_init
@paddle.no_grad()
def reset_initialized_parameter(model, include_self=True):
"""
Reset initialized parameter using following method for [conv, linear, embedding, bn]
Args:
model (paddle.Layer): paddle Layer
include_self (bool: False): include_self for Layer.named_sublayers method. Indicate whether including itself
Return:
None
"""
for _, m in model.named_sublayers(include_self=include_self):
if isinstance(m, nn.Conv2D):
k = float(m._groups) / (m._in_channels * m._kernel_size[0] * m._kernel_size[1])
k = math.sqrt(k)
_no_grad_uniform_(m.weight, -k, k)
if hasattr(m, "bias") and getattr(m, "bias") is not None:
_no_grad_uniform_(m.bias, -k, k)
elif isinstance(m, nn.Linear):
k = math.sqrt(1.0 / m.weight.shape[0])
_no_grad_uniform_(m.weight, -k, k)
if hasattr(m, "bias") and getattr(m, "bias") is not None:
_no_grad_uniform_(m.bias, -k, k)
elif isinstance(m, nn.Embedding):
_no_grad_normal_(m.weight, mean=0.0, std=1.0)
elif isinstance(m, (nn.BatchNorm2D, nn.LayerNorm)):
_no_grad_fill_(m.weight, 1.0)
if hasattr(m, "bias") and getattr(m, "bias") is not None:
_no_grad_fill_(m.bias, 0)
|