File size: 9,751 Bytes
21231ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
This code is based on https://github.com/pytorch/pytorch/blob/master/torch/nn/init.py
Ths copyright of pytorch/pytorch is a BSD-style license, as found in the LICENSE file.
"""

import math

import numpy as np
import paddle
import paddle.nn as nn

__all__ = [
    "uniform_",
    "normal_",
    "constant_",
    "ones_",
    "zeros_",
    "xavier_uniform_",
    "xavier_normal_",
    "kaiming_uniform_",
    "kaiming_normal_",
    "linear_init_",
    "conv_init_",
    "reset_initialized_parameter",
]


def _no_grad_uniform_(tensor, a, b):
    with paddle.no_grad():
        tensor.set_value(paddle.uniform(shape=tensor.shape, dtype=tensor.dtype, min=a, max=b))
    return tensor


def _no_grad_normal_(tensor, mean=0.0, std=1.0):
    with paddle.no_grad():
        tensor.set_value(paddle.normal(mean=mean, std=std, shape=tensor.shape))
    return tensor


def _no_grad_fill_(tensor, value=0.0):
    with paddle.no_grad():
        tensor.set_value(paddle.full_like(tensor, value, dtype=tensor.dtype))
    return tensor


def uniform_(tensor, a, b):
    """
    Modified tensor inspace using uniform_
    Args:
        tensor (paddle.Tensor): paddle Tensor
        a (float|int): min value.
        b (float|int): max value.
    Return:
        tensor
    """
    return _no_grad_uniform_(tensor, a, b)


def normal_(tensor, mean=0.0, std=1.0):
    """
    Modified tensor inspace using normal_
    Args:
        tensor (paddle.Tensor): paddle Tensor
        mean (float|int): mean value.
        std (float|int): std value.
    Return:
        tensor
    """
    return _no_grad_normal_(tensor, mean, std)


def constant_(tensor, value=0.0):
    """
    Modified tensor inspace using constant_
    Args:
        tensor (paddle.Tensor): paddle Tensor
        value (float|int): value to fill tensor.
    Return:
        tensor
    """
    return _no_grad_fill_(tensor, value)


def ones_(tensor):
    """
    Modified tensor inspace using ones_
    Args:
        tensor (paddle.Tensor): paddle Tensor
    Return:
        tensor
    """
    return _no_grad_fill_(tensor, 1)


def zeros_(tensor):
    """
    Modified tensor inspace using zeros_
    Args:
        tensor (paddle.Tensor): paddle Tensor
    Return:
        tensor
    """
    return _no_grad_fill_(tensor, 0)


def vector_(tensor, vector):
    with paddle.no_grad():
        tensor.set_value(paddle.to_tensor(vector, dtype=tensor.dtype))
    return tensor


def _calculate_fan_in_and_fan_out(tensor, reverse=False):
    """
    Calculate (fan_in, _fan_out) for tensor
    Args:
        tensor (Tensor): paddle.Tensor
        reverse (bool: False): tensor data format order, False by default as [fout, fin, ...]. e.g. : conv.weight [cout, cin, kh, kw] is False; linear.weight [cin, cout] is True
    Return:
        Tuple[fan_in, fan_out]
    """
    if tensor.ndim < 2:
        raise ValueError("Fan in and fan out can not be computed for tensor with fewer than 2 dimensions")

    if reverse:
        num_input_fmaps, num_output_fmaps = tensor.shape[0], tensor.shape[1]
    else:
        num_input_fmaps, num_output_fmaps = tensor.shape[1], tensor.shape[0]

    receptive_field_size = 1
    if tensor.ndim > 2:
        receptive_field_size = np.prod(tensor.shape[2:])

    fan_in = num_input_fmaps * receptive_field_size
    fan_out = num_output_fmaps * receptive_field_size

    return fan_in, fan_out


def xavier_uniform_(tensor, gain=1.0, reverse=False):
    """
    Modified tensor inspace using xavier_uniform_
    Args:
        tensor (paddle.Tensor): paddle Tensor
        gain (float): super parameter, 1. default.
        reverse (bool):  reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
    Return:
        tensor
    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
    std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
    k = math.sqrt(3.0) * std
    return _no_grad_uniform_(tensor, -k, k)


def xavier_normal_(tensor, gain=1.0, reverse=False):
    """
    Modified tensor inspace using xavier_normal_
    Args:
        tensor (paddle.Tensor): paddle Tensor
        gain (float): super parameter, 1. default.
        reverse (bool):  reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
    Return:
        tensor
    """
    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse=reverse)
    std = gain * math.sqrt(2.0 / float(fan_in + fan_out))
    return _no_grad_normal_(tensor, 0, std)


# reference: https://pytorch.org/docs/stable/_modules/torch/nn/init.html
def _calculate_correct_fan(tensor, mode, reverse=False):
    mode = mode.lower()
    valid_modes = ["fan_in", "fan_out"]
    if mode not in valid_modes:
        raise ValueError("Mode {} not supported, please use one of {}".format(mode, valid_modes))

    fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor, reverse)

    return fan_in if mode == "fan_in" else fan_out


def _calculate_gain(nonlinearity, param=None):
    linear_fns = ["linear", "conv1d", "conv2d", "conv3d", "conv_transpose1d", "conv_transpose2d", "conv_transpose3d"]
    if nonlinearity in linear_fns or nonlinearity == "sigmoid":
        return 1
    elif nonlinearity == "tanh":
        return 5.0 / 3
    elif nonlinearity == "relu":
        return math.sqrt(2.0)
    elif nonlinearity == "leaky_relu":
        if param is None:
            negative_slope = 0.01
        elif not isinstance(param, bool) and isinstance(param, int) or isinstance(param, float):
            # True/False are instances of int, hence check above
            negative_slope = param
        else:
            raise ValueError("negative_slope {} not a valid number".format(param))
        return math.sqrt(2.0 / (1 + negative_slope**2))
    elif nonlinearity == "selu":
        return 3.0 / 4
    else:
        raise ValueError("Unsupported nonlinearity {}".format(nonlinearity))


def kaiming_uniform_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False):
    """
    Modified tensor inspace using kaiming_uniform method
    Args:
        tensor (paddle.Tensor): paddle Tensor
        mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
        nonlinearity (str): nonlinearity method name
        reverse (bool):  reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
    Return:
        tensor
    """
    fan = _calculate_correct_fan(tensor, mode, reverse)
    gain = _calculate_gain(nonlinearity, a)
    std = gain / math.sqrt(fan)
    k = math.sqrt(3.0) * std
    return _no_grad_uniform_(tensor, -k, k)


def kaiming_normal_(tensor, a=0, mode="fan_in", nonlinearity="leaky_relu", reverse=False):
    """
    Modified tensor inspace using kaiming_normal_
    Args:
        tensor (paddle.Tensor): paddle Tensor
        mode (str): ['fan_in', 'fan_out'], 'fin_in' defalut
        nonlinearity (str): nonlinearity method name
        reverse (bool):  reverse (bool: False): tensor data format order, False by default as [fout, fin, ...].
    Return:
        tensor
    """
    fan = _calculate_correct_fan(tensor, mode, reverse)
    gain = _calculate_gain(nonlinearity, a)
    std = gain / math.sqrt(fan)
    return _no_grad_normal_(tensor, 0, std)


def linear_init_(module):
    bound = 1 / math.sqrt(module.weight.shape[0])
    uniform_(module.weight, -bound, bound)
    uniform_(module.bias, -bound, bound)


def conv_init_(module):
    bound = 1 / np.sqrt(np.prod(module.weight.shape[1:]))
    uniform_(module.weight, -bound, bound)
    if module.bias is not None:
        uniform_(module.bias, -bound, bound)


def bias_init_with_prob(prior_prob=0.01):
    """initialize conv/fc bias value according to a given probability value."""
    bias_init = float(-np.log((1 - prior_prob) / prior_prob))
    return bias_init


@paddle.no_grad()
def reset_initialized_parameter(model, include_self=True):
    """
    Reset initialized parameter using following method for [conv, linear, embedding, bn]
    Args:
        model (paddle.Layer): paddle Layer
        include_self (bool: False): include_self for Layer.named_sublayers method. Indicate whether including itself
    Return:
        None
    """
    for _, m in model.named_sublayers(include_self=include_self):
        if isinstance(m, nn.Conv2D):
            k = float(m._groups) / (m._in_channels * m._kernel_size[0] * m._kernel_size[1])
            k = math.sqrt(k)
            _no_grad_uniform_(m.weight, -k, k)
            if hasattr(m, "bias") and getattr(m, "bias") is not None:
                _no_grad_uniform_(m.bias, -k, k)

        elif isinstance(m, nn.Linear):
            k = math.sqrt(1.0 / m.weight.shape[0])
            _no_grad_uniform_(m.weight, -k, k)
            if hasattr(m, "bias") and getattr(m, "bias") is not None:
                _no_grad_uniform_(m.bias, -k, k)

        elif isinstance(m, nn.Embedding):
            _no_grad_normal_(m.weight, mean=0.0, std=1.0)

        elif isinstance(m, (nn.BatchNorm2D, nn.LayerNorm)):
            _no_grad_fill_(m.weight, 1.0)
            if hasattr(m, "bias") and getattr(m, "bias") is not None:
                _no_grad_fill_(m.bias, 0)