File size: 5,527 Bytes
21231ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Tuple, Union

import paddle

from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput


class DDIMPipeline(DiffusionPipeline):
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular xxxx, etc.)

    Parameters:
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image. Can be one of
            [`DDPMScheduler`], or [`DDIMScheduler`].
    """

    def __init__(self, unet, scheduler):
        super().__init__()
        self.register_modules(unet=unet, scheduler=scheduler)

    @paddle.no_grad()
    def __call__(
        self,
        batch_size: int = 1,
        generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
        eta: float = 0.0,
        num_inference_steps: int = 50,
        use_clipped_model_output: Optional[bool] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
    ) -> Union[ImagePipelineOutput, Tuple]:
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                The number of images to generate.
            generator (`paddle.Generator`, *optional*):
                One or a list of paddle generator(s) to make generation deterministic.
            eta (`float`, *optional*, defaults to 0.0):
                The eta parameter which controls the scale of the variance (0 is DDIM and 1 is one type of DDPM).
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            use_clipped_model_output (`bool`, *optional*, defaults to `None`):
                if `True` or `False`, see documentation for `DDIMScheduler.step`. If `None`, nothing is passed
                downstream to the scheduler. So use `None` for schedulers which don't support this argument.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
            `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
            generated images.
        """
        # Sample gaussian noise to begin loop
        if isinstance(self.unet.sample_size, int):
            image_shape = (batch_size, self.unet.in_channels, self.unet.sample_size, self.unet.sample_size)
        else:
            image_shape = (batch_size, self.unet.in_channels, *self.unet.sample_size)

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if isinstance(generator, list):
            shape = (1,) + image_shape[1:]
            image = [paddle.randn(shape, generator=generator[i], dtype=self.unet.dtype) for i in range(batch_size)]
            image = paddle.concat(image, axis=0)
        else:
            image = paddle.randn(image_shape, generator=generator, dtype=self.unet.dtype)

        # set step values
        self.scheduler.set_timesteps(num_inference_steps)

        for t in self.progress_bar(self.scheduler.timesteps):
            # 1. predict noise model_output
            model_output = self.unet(image, t).sample

            # 2. predict previous mean of image x_t-1 and add variance depending on eta
            # eta corresponds to η in paper and should be between [0, 1]
            # do x_t -> x_t-1
            image = self.scheduler.step(
                model_output, t, image, eta=eta, use_clipped_model_output=use_clipped_model_output, generator=generator
            ).prev_sample

        image = (image / 2 + 0.5).clip(0, 1)
        image = image.transpose([0, 2, 3, 1]).cast("float32").numpy()
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)