File size: 23,714 Bytes
21231ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Callable, List, Optional, Union

import paddle
import PIL.Image

from paddlenlp.transformers import (
    CLIPFeatureExtractor,
    CLIPTextModelWithProjection,
    CLIPTokenizer,
    CLIPVisionModelWithProjection,
)

from ...models import AutoencoderKL, UNet2DConditionModel
from ...pipeline_utils import DiffusionPipeline
from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from ...utils import logging
from .modeling_text_unet import UNetFlatConditionModel
from .pipeline_versatile_diffusion_dual_guided import (
    VersatileDiffusionDualGuidedPipeline,
)
from .pipeline_versatile_diffusion_image_variation import (
    VersatileDiffusionImageVariationPipeline,
)
from .pipeline_versatile_diffusion_text_to_image import (
    VersatileDiffusionTextToImagePipeline,
)

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


class VersatileDiffusionPipeline(DiffusionPipeline):
    r"""
    Pipeline for generation using Versatile Diffusion.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModelWithProjection`]):
            Frozen text-encoder. Versatile Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        image_encoder ([`CLIPVisionModelWithProjection`]):
            Frozen vision-encoder. Versatile Diffusion uses the vision portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPVisionModelWithProjection), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        image_unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        text_unet ([`UNetFlatConditionModel`]): xxx.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        image_feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

    tokenizer: CLIPTokenizer
    image_feature_extractor: CLIPFeatureExtractor
    text_encoder: CLIPTextModelWithProjection
    image_encoder: CLIPVisionModelWithProjection
    image_unet: UNet2DConditionModel
    text_unet: UNetFlatConditionModel
    vae: AutoencoderKL
    scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler]

    def __init__(
        self,
        tokenizer: CLIPTokenizer,
        image_feature_extractor: CLIPFeatureExtractor,
        text_encoder: CLIPTextModelWithProjection,
        image_encoder: CLIPVisionModelWithProjection,
        image_unet: UNet2DConditionModel,
        text_unet: UNetFlatConditionModel,
        vae: AutoencoderKL,
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
    ):
        super().__init__()

        self.register_modules(
            tokenizer=tokenizer,
            image_feature_extractor=image_feature_extractor,
            text_encoder=text_encoder,
            image_encoder=image_encoder,
            image_unet=image_unet,
            text_unet=text_unet,
            vae=vae,
            scheduler=scheduler,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)

    @paddle.no_grad()
    def image_variation(
        self,
        image: Union[paddle.Tensor, PIL.Image.Image],
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
        latents: Optional[paddle.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
        callback_steps: Optional[int] = 1,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            image (`PIL.Image.Image`, `List[PIL.Image.Image]` or `torch.Tensor`):
                The image prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`paddle.Generator`, *optional*):
                A [paddle generator] to make generation
                deterministic.
            latents (`paddle.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Examples:

        ```py
        >>> from ppdiffusers import VersatileDiffusionPipeline
        >>> import paddle
        >>> import requests
        >>> from io import BytesIO
        >>> from PIL import Image

        >>> # let's download an initial image
        >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"

        >>> response = requests.get(url)
        >>> image = Image.open(BytesIO(response.content)).convert("RGB")

        >>> pipe = VersatileDiffusionPipeline.from_pretrained(
        ...     "shi-labs/versatile-diffusion"
        ... )

        >>> generator = paddle.Generator().manual_seed(0)
        >>> image = pipe.image_variation(image, generator=generator).images[0]
        >>> image.save("./car_variation.png")
        ```

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        expected_components = inspect.signature(VersatileDiffusionImageVariationPipeline.__init__).parameters.keys()
        components = {name: component for name, component in self.components.items() if name in expected_components}
        return VersatileDiffusionImageVariationPipeline(**components)(
            image=image,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
        )

    @paddle.no_grad()
    def text_to_image(
        self,
        prompt: Union[str, List[str]],
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
        latents: Optional[paddle.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
        callback_steps: Optional[int] = 1,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`paddle.Generator`, *optional*):
                A [paddle generator] to make generation
                deterministic.
            latents (`paddle.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Examples:

        ```py
        >>> from ppdiffusers import VersatileDiffusionPipeline
        >>> import paddle

        >>> pipe = VersatileDiffusionPipeline.from_pretrained(
        ...     "shi-labs/versatile-diffusion"
        ... )

        >>> generator = paddle.Generator().manual_seed(0)
        >>> image = pipe.text_to_image("an astronaut riding on a horse on mars", generator=generator).images[0]
        >>> image.save("./astronaut.png")
        ```

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        expected_components = inspect.signature(VersatileDiffusionTextToImagePipeline.__init__).parameters.keys()
        components = {name: component for name, component in self.components.items() if name in expected_components}
        temp_pipeline = VersatileDiffusionTextToImagePipeline(**components)
        output = temp_pipeline(
            prompt=prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            negative_prompt=negative_prompt,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
        )
        # swap the attention blocks back to the original state
        temp_pipeline._swap_unet_attention_blocks()

        return output

    @paddle.no_grad()
    def dual_guided(
        self,
        prompt: Union[PIL.Image.Image, List[PIL.Image.Image]],
        image: Union[str, List[str]],
        text_to_image_strength: float = 0.5,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[paddle.Generator, List[paddle.Generator]]] = None,
        latents: Optional[paddle.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, paddle.Tensor], None]] = None,
        callback_steps: Optional[int] = 1,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to self.image_unet.config.sample_size * self.vae_scale_factor):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`paddle.Generator`, *optional*):
                A [paddle generator] to make generation
                deterministic.
            latents (`paddle.Tensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: paddle.Tensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Examples:

        ```py
        >>> from ppdiffusers import VersatileDiffusionPipeline
        >>> import paddle
        >>> import requests
        >>> from io import BytesIO
        >>> from PIL import Image

        >>> # let's download an initial image
        >>> url = "https://huggingface.co/datasets/diffusers/images/resolve/main/benz.jpg"

        >>> response = requests.get(url)
        >>> image = Image.open(BytesIO(response.content)).convert("RGB")
        >>> text = "a red car in the sun"

        >>> pipe = VersatileDiffusionPipeline.from_pretrained(
        ...     "shi-labs/versatile-diffusion"
        ... )

        >>> generator = paddle.Generator().manual_seed(0)
        >>> text_to_image_strength = 0.75

        >>> image = pipe.dual_guided(
        ...     prompt=text, image=image, text_to_image_strength=text_to_image_strength, generator=generator
        ... ).images[0]
        >>> image.save("./car_variation.png")
        ```

        Returns:
            [`~pipelines.stable_diffusion.ImagePipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.ImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple. When
            returning a tuple, the first element is a list with the generated images.
        """

        expected_components = inspect.signature(VersatileDiffusionDualGuidedPipeline.__init__).parameters.keys()
        components = {name: component for name, component in self.components.items() if name in expected_components}
        temp_pipeline = VersatileDiffusionDualGuidedPipeline(**components)
        output = temp_pipeline(
            prompt=prompt,
            image=image,
            text_to_image_strength=text_to_image_strength,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
            callback_steps=callback_steps,
        )
        temp_pipeline._revert_dual_attention()

        return output