File size: 30,347 Bytes
21231ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import importlib
import inspect
import os
import tempfile
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Union

import numpy as np
import paddle
import paddle.nn as nn
import PIL
from huggingface_hub import (
    create_repo,
    get_hf_file_metadata,
    hf_hub_url,
    repo_type_and_id_from_hf_id,
    upload_folder,
)
from huggingface_hub.utils import EntryNotFoundError
from packaging import version
from PIL import Image
from tqdm.auto import tqdm

from . import FastDeployRuntimeModel
from .configuration_utils import ConfigMixin
from .utils import PPDIFFUSERS_CACHE, BaseOutput, deprecate, logging

INDEX_FILE = "model_state.pdparams"
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py"
DUMMY_MODULES_FOLDER = "ppdiffusers.utils"
PADDLENLP_DUMMY_MODULES_FOLDER = "paddlenlp.transformers.utils"

logger = logging.get_logger(__name__)

LOADABLE_CLASSES = {
    "ppdiffusers": {
        "ModelMixin": ["save_pretrained", "from_pretrained"],
        "SchedulerMixin": ["save_pretrained", "from_pretrained"],
        "DiffusionPipeline": ["save_pretrained", "from_pretrained"],
        "FastDeployRuntimeModel": ["save_pretrained", "from_pretrained"],
    },
    "paddlenlp.transformers": {
        "PretrainedTokenizer": ["save_pretrained", "from_pretrained"],
        "PretrainedModel": ["save_pretrained", "from_pretrained"],
        "FeatureExtractionMixin": ["save_pretrained", "from_pretrained"],
        "ProcessorMixin": ["save_pretrained", "from_pretrained"],
        "ImageProcessingMixin": ["save_pretrained", "from_pretrained"],
    },
}

ALL_IMPORTABLE_CLASSES = {}
for library in LOADABLE_CLASSES:
    ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library])


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
            List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
            num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
            List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the
            denoised audio samples of the diffusion pipeline.
    """

    audios: np.ndarray


class DiffusionPipeline(ConfigMixin):
    r"""
    Base class for all models.

    [`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines
    and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to:

        - move all Paddle modules to the device of your choice
        - enabling/disabling the progress bar for the denoising iteration

    Class attributes:

        - **config_name** (`str`) -- name of the config file that will store the class and module names of all
        - **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be
          passed for the pipeline to function (should be overridden by subclasses).
    """
    config_name = "model_index.json"
    _optional_components = []

    def register_modules(self, **kwargs):
        # import it here to avoid circular import
        from . import pipelines

        for name, module in kwargs.items():
            # retrieve library
            if module is None:
                register_dict = {name: (None, None)}
            else:
                # TODO (junnyu) support paddlenlp.transformers
                if "paddlenlp" in module.__module__.split(".") or "ppnlp_patch_utils" in module.__module__.split("."):
                    library = "paddlenlp.transformers"
                else:
                    library = module.__module__.split(".")[0]

                # check if the module is a pipeline module
                pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None
                path = module.__module__.split(".")
                is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir)

                # if library is not in LOADABLE_CLASSES, then it is a custom module.
                # Or if it's a pipeline module, then the module is inside the pipeline
                # folder so we set the library to module name.
                if library not in LOADABLE_CLASSES or is_pipeline_module:
                    library = pipeline_dir

                # retrieve class_name
                class_name = module.__class__.__name__

                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

    def save_pretrained(self, save_directory: Union[str, os.PathLike]):
        """
        Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to
        a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading
        method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method.

        Arguments:
            save_directory (`str` or `os.PathLike`):
                Directory to which to save. Will be created if it doesn't exist.
        """
        self.save_config(save_directory)

        model_index_dict = dict(self.config)
        model_index_dict.pop("_class_name")
        # TODO (junnyu) support old version
        model_index_dict.pop("_diffusers_paddle_version", None)
        model_index_dict.pop("_diffusers_version", None)
        model_index_dict.pop("_ppdiffusers_version", None)
        model_index_dict.pop("_module", None)

        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}

        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)

            model_cls = sub_model.__class__

            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
                library = importlib.import_module(library_name)
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

            save_method = getattr(sub_model, save_method_name)
            save_method(os.path.join(save_directory, pipeline_component_name))

    def save_to_hf_hub(
        self,
        repo_id: str,
        private: Optional[bool] = None,
        commit_message: Optional[str] = None,
        revision: Optional[str] = None,
        create_pr: bool = False,
    ):
        """
        Uploads all elements of this pipeline to a new HuggingFace Hub repository.
        Args:
            repo_id (str): Repository name for your model/tokenizer in the Hub.
            private (bool, optional): Whether the model/tokenizer is set to private
            commit_message (str, optional) β€” The summary / title / first line of the generated commit. Defaults to: f"Upload {path_in_repo} with huggingface_hub"
            revision (str, optional) β€” The git revision to commit from. Defaults to the head of the "main" branch.
            create_pr (boolean, optional) β€” Whether or not to create a Pull Request with that commit. Defaults to False.
                If revision is not set, PR is opened against the "main" branch. If revision is set and is a branch, PR is opened against this branch.
                If revision is set and is not a branch name (example: a commit oid), an RevisionNotFoundError is returned by the server.

        Returns: The url of the commit of your model in the given repository.
        """
        repo_url = create_repo(repo_id, private=private, exist_ok=True)

        # Infer complete repo_id from repo_url
        # Can be different from the input `repo_id` if repo_owner was implicit
        _, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url)

        repo_id = f"{repo_owner}/{repo_name}"

        # Check if README file already exist in repo
        try:
            get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision))
            has_readme = True
        except EntryNotFoundError:
            has_readme = False

        with tempfile.TemporaryDirectory() as tmp_dir:
            # save model
            self.save_pretrained(tmp_dir)
            # Add readme if does not exist
            logger.info("README.md not found, adding the default README.md")
            if not has_readme:
                with open(os.path.join(tmp_dir, "README.md"), "w") as f:
                    f.write(f"---\nlibrary_name: ppdiffusers\n---\n# {repo_id}")

            # Upload model and return
            logger.info(f"Pushing to the {repo_id}. This might take a while")
            return upload_folder(
                repo_id=repo_id,
                repo_type="model",
                folder_path=tmp_dir,
                commit_message=commit_message,
                revision=revision,
                create_pr=create_pr,
            )

    def to(self, paddle_device: Optional[str] = None):
        if paddle_device is None:
            return self

        module_names, _, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, nn.Layer):
                if module.dtype == paddle.float16 and str(paddle_device) in ["cpu"]:
                    logger.warning(
                        "Pipelines loaded with `paddle_dtype=paddle.float16` cannot run with `cpu` device. It"
                        " is not recommended to move them to `cpu` as running them will fail. Please make"
                        " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                        " support for`float16` operations on this device in Paddle. Please, remove the"
                        " `paddle_dtype=paddle.float16` argument, or use another device for inference."
                    )
                module.to(paddle_device)
        return self

    @property
    def device(self):
        r"""
        Returns:
            `paddle.device`: The paddle device on which the pipeline is located.
        """
        module_names, _, _ = self.extract_init_dict(dict(self.config))
        for name in module_names.keys():
            module = getattr(self, name)
            if isinstance(module, nn.Layer):
                return module.place
        return "cpu"

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
        Instantiate a Paddle diffusion pipeline from pre-trained pipeline weights.

        The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated).

        The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come
        pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning
        task.

        The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those
        weights are discarded.

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

                    - A string, the *model id* of a pretrained pipeline hosted inside in `https://bj.bcebos.com/paddlenlp/models/community`.
                      like `CompVis/stable-diffusion-v1-4`, `CompVis/ldm-text2im-large-256`.
                    - A path to a *directory* containing pipeline weights saved using
                      [`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`.
            paddle_dtype (`str` or `paddle.dtype`, *optional*):
                Override the default `paddle.dtype` and load the model under this dtype. If `"auto"` is passed the dtype
                will be automatically derived from the model's weights.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
            from_hf_hub (bool, *optional*):
                Whether to load from Hugging Face Hub. Defaults to False
            kwargs (remaining dictionary of keyword arguments, *optional*):
                Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the
                specific pipeline class. The overwritten components are then directly passed to the pipelines
                `__init__` method. See example below for more information.

        Examples:

        ```py
        >>> from ppdiffusers import DiffusionPipeline

        >>> # Download pipeline from bos and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from ppdiffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
        cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE)
        paddle_dtype = kwargs.pop("paddle_dtype", None)
        # (TODO junnyu, we donot suuport this.)
        # custom_pipeline = kwargs.pop("custom_pipeline", None)
        # for fastdeploy model
        runtime_options = kwargs.pop("runtime_options", None)
        from_hf_hub = kwargs.pop("from_hf_hub", False)

        # 1. Download the checkpoints and configs
        if not os.path.isdir(pretrained_model_name_or_path):
            config_dict = cls.load_config(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                from_hf_hub=from_hf_hub,
            )
        else:
            config_dict = cls.load_config(pretrained_model_name_or_path)

        # 2. Load the pipeline class
        if cls != DiffusionPipeline:
            pipeline_class = cls
        else:
            diffusers_module = importlib.import_module(cls.__module__.split(".")[0])
            pipeline_class = getattr(diffusers_module, config_dict["_class_name"])

        # To be removed in 1.0.0
        # TODO (junnyu) support old version
        _ppdiffusers_version = (
            config_dict["_diffusers_paddle_version"]
            if "_diffusers_paddle_version" in config_dict
            else config_dict["_ppdiffusers_version"]
        )
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(_ppdiffusers_version).base_version
        ) <= version.parse("0.5.1"):
            from . import (
                StableDiffusionInpaintPipeline,
                StableDiffusionInpaintPipelineLegacy,
            )

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)

        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

        # define init kwargs
        init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict}
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )
        # import it here to avoid circular import
        from . import pipelines

        # 3. Load each module in the pipeline
        for name, (library_name, class_name) in init_dict.items():
            # TODO (junnyu) support old model_index.json
            if library_name == "diffusers_paddle":
                library_name = "ppdiffusers"

            is_pipeline_module = hasattr(pipelines, library_name)
            loaded_sub_model = None

            # if the model is in a pipeline module, then we load it from the pipeline
            if name in passed_class_obj:
                # 1. check that passed_class_obj has correct parent class
                if not is_pipeline_module:
                    library = importlib.import_module(library_name)
                    class_obj = getattr(library, class_name)
                    importable_classes = LOADABLE_CLASSES[library_name]
                    class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

                    expected_class_obj = None
                    for class_name, class_candidate in class_candidates.items():
                        if class_candidate is not None and issubclass(class_obj, class_candidate):
                            expected_class_obj = class_candidate

                    if not issubclass(passed_class_obj[name].__class__, expected_class_obj):
                        raise ValueError(
                            f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be"
                            f" {expected_class_obj}"
                        )
                else:
                    logger.warning(
                        f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it"
                        " has the correct type"
                    )

                # set passed class object
                loaded_sub_model = passed_class_obj[name]
            elif is_pipeline_module:
                pipeline_module = getattr(pipelines, library_name)
                class_obj = getattr(pipeline_module, class_name)
                importable_classes = ALL_IMPORTABLE_CLASSES
                class_candidates = {c: class_obj for c in importable_classes.keys()}
            else:
                # else we just import it from the library.
                library = importlib.import_module(library_name)

                class_obj = getattr(library, class_name)
                importable_classes = LOADABLE_CLASSES[library_name]
                class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()}

            if loaded_sub_model is None:
                load_method_name = None
                for class_name, class_candidate in class_candidates.items():
                    if class_candidate is not None and issubclass(class_obj, class_candidate):
                        load_method_name = importable_classes[class_name][1]

                if load_method_name is None:
                    none_module = class_obj.__module__
                    is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
                        PADDLENLP_DUMMY_MODULES_FOLDER
                    )
                    if is_dummy_path and "dummy" in none_module:
                        # call class_obj for nice error message of missing requirements
                        class_obj()

                    raise ValueError(
                        f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
                        f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
                    )

                load_method = getattr(class_obj, load_method_name)
                loading_kwargs = {
                    "from_hf_hub": from_hf_hub,
                    "cache_dir": cache_dir,
                }

                if issubclass(class_obj, FastDeployRuntimeModel):
                    if isinstance(runtime_options, dict):
                        options = runtime_options.get(name, None)
                    else:
                        options = runtime_options
                    loading_kwargs["runtime_options"] = options

                if os.path.isdir(pretrained_model_name_or_path):
                    model_path_dir = os.path.join(pretrained_model_name_or_path, name)
                elif from_hf_hub:
                    model_path_dir = pretrained_model_name_or_path
                    loading_kwargs["subfolder"] = name
                else:
                    # BOS does not require 'subfolder'. We simpy concat the model name with the subfolder
                    model_path_dir = pretrained_model_name_or_path + "/" + name

                loaded_sub_model = load_method(model_path_dir, **loading_kwargs)

            # TODO junnyu find a better way to covert to float16
            if isinstance(loaded_sub_model, nn.Layer):
                if paddle_dtype is not None and next(loaded_sub_model.named_parameters())[1].dtype != paddle_dtype:
                    loaded_sub_model = loaded_sub_model.to(dtype=paddle_dtype)
                # paddlenlp model is training mode not eval mode
                loaded_sub_model.eval()

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionScheduler(...)

        # 4. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 5. Instantiate the pipeline
        model = pipeline_class(**init_kwargs)
        return model

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
        Enable sliced attention computation.
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                `"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
        module_names, _, _ = self.extract_init_dict(dict(self.config))
        for module_name in module_names:
            module = getattr(self, module_name)
            if isinstance(module, nn.Layer) and hasattr(module, "set_attention_slice"):
                module.set_attention_slice(slice_size)

    @staticmethod
    def _get_signature_keys(obj):
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
        expected_modules = set(required_parameters.keys()) - set(["self"])
        return expected_modules, optional_parameters

    @property
    def components(self) -> Dict[str, Any]:
        r"""

        The `self.components` property can be useful to run different pipelines with the same weights and
        configurations to not have to re-allocate memory.

        Examples:

        ```py
        >>> from ppdiffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```

        Returns:
            A dictionaly containing all the modules needed to initialize the pipeline.
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
                f" {expected_modules} to be defined, but {components} are defined."
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs