File size: 11,754 Bytes
21231ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
# Copyright 2022 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Tuple, Union

import numpy as np
import paddle

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS
from .scheduling_utils import SchedulerMixin, SchedulerOutput


class KDPM2DiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
    Scheduler created by @crowsonkb in [k_diffusion](https://github.com/crowsonkb/k-diffusion), see:
    https://github.com/crowsonkb/k-diffusion/blob/5b3af030dd83e0297272d861c19477735d0317ec/k_diffusion/sampling.py#L188

    Scheduler inspired by DPM-Solver-2 and Algorthim 2 from Karras et al. (2022).

    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
    """

    _compatibles = _COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy()
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
        prediction_type: str = "epsilon",
    ):
        if trained_betas is not None:
            self.betas = paddle.to_tensor(trained_betas, dtype="float32")
        elif beta_schedule == "linear":
            self.betas = paddle.linspace(beta_start, beta_end, num_train_timesteps, dtype="float32")
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = paddle.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype="float32") ** 2
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = paddle.cumprod(self.alphas, 0)

        #  set all values
        self.set_timesteps(num_train_timesteps, num_train_timesteps)

    def index_for_timestep(self, timestep):
        indices = (self.timesteps == timestep).nonzero()
        if self.state_in_first_order:
            pos = -1
        else:
            pos = 0
        return indices[pos].item()

    def scale_model_input(
        self,
        sample: paddle.Tensor,
        timestep: Union[float, paddle.Tensor],
    ) -> paddle.Tensor:
        """
        Args:
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
            sample (`paddle.Tensor`): input sample timestep (`int`, optional): current timestep
        Returns:
            `paddle.Tensor`: scaled input sample
        """
        step_index = self.index_for_timestep(timestep)

        if self.state_in_first_order:
            sigma = self.sigmas[step_index]
        else:
            sigma = self.sigmas_interpol[step_index]

        sample = sample / ((sigma**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        num_train_timesteps: Optional[int] = None,
    ):
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

        timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        self.log_sigmas = paddle.to_tensor(np.log(sigmas), dtype="float32")

        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = paddle.to_tensor(sigmas)

        # interpolate sigmas
        sigmas_interpol = sigmas.log().lerp(sigmas.roll(1).log(), 0.5).exp()
        # must set to 0.0
        sigmas_interpol[-1] = 0.0

        self.sigmas = paddle.concat([sigmas[:1], sigmas[1:].repeat_interleave(2), sigmas[-1:]])
        self.sigmas_interpol = paddle.concat(
            [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2), sigmas_interpol[-1:]]
        )

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

        timesteps = paddle.to_tensor(timesteps)

        # interpolate timesteps
        timesteps_interpol = self.sigma_to_t(sigmas_interpol)
        interleaved_timesteps = paddle.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), axis=-1).flatten()
        timesteps = paddle.concat([timesteps[:1], interleaved_timesteps])

        self.timesteps = timesteps

        self.sample = None

    def sigma_to_t(self, sigma):
        # get log sigma
        log_sigma = sigma.log()

        # get distribution
        dists = log_sigma - self.log_sigmas[:, None]

        # get sigmas range
        low_idx = (dists >= 0).cast("int64").cumsum(axis=0).argmax(axis=0).clip(max=self.log_sigmas.shape[0] - 2)

        high_idx = low_idx + 1

        low = self.log_sigmas[low_idx]
        high = self.log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = w.clip(0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    @property
    def state_in_first_order(self):
        return self.sample is None

    def step(
        self,
        model_output: Union[paddle.Tensor, np.ndarray],
        timestep: Union[float, paddle.Tensor],
        sample: Union[paddle.Tensor, np.ndarray],
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Args:
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).
            model_output (`paddle.Tensor` or `np.ndarray`): direct output from learned diffusion model. timestep
            (`int`): current discrete timestep in the diffusion chain. sample (`paddle.Tensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
        step_index = self.index_for_timestep(timestep)

        if self.state_in_first_order:
            sigma = self.sigmas[step_index]
            sigma_interpol = self.sigmas_interpol[step_index + 1]
            sigma_next = self.sigmas[step_index + 1]
        else:
            # 2nd order / KDPM2's method
            sigma = self.sigmas[step_index - 1]
            sigma_interpol = self.sigmas_interpol[step_index]
            sigma_next = self.sigmas[step_index]

        # currently only gamma=0 is supported. This usually works best anyways.
        # We can support gamma in the future but then need to scale the timestep before
        # passing it to the model which requires a change in API
        gamma = 0
        sigma_hat = sigma * (gamma + 1)  # Note: sigma_hat == sigma for now

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        if self.config.prediction_type == "epsilon":
            sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
            pred_original_sample = sample - sigma_input * model_output
        elif self.config.prediction_type == "v_prediction":
            sigma_input = sigma_hat if self.state_in_first_order else sigma_interpol
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )

        if self.state_in_first_order:
            # 2. Convert to an ODE derivative for 1st order
            derivative = (sample - pred_original_sample) / sigma_hat
            # 3. delta timestep
            dt = sigma_interpol - sigma_hat

            # store for 2nd order step
            self.sample = sample
        else:
            # DPM-Solver-2
            # 2. Convert to an ODE derivative for 2nd order
            derivative = (sample - pred_original_sample) / sigma_interpol

            # 3. delta timestep
            dt = sigma_next - sigma_hat

            sample = self.sample
            self.sample = None

        prev_sample = sample + derivative * dt

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def add_noise(
        self,
        original_samples: paddle.Tensor,
        noise: paddle.Tensor,
        timesteps: paddle.Tensor,
    ) -> paddle.Tensor:
        # Make sure sigmas and timesteps have the same dtype as original_samples
        self.sigmas = self.sigmas.cast(original_samples.dtype)

        step_indices = [self.index_for_timestep(t) for t in timesteps]

        sigma = self.sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps