|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import importlib |
|
import inspect |
|
import os |
|
import tempfile |
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
import numpy as np |
|
import paddle |
|
import paddle.nn as nn |
|
import PIL |
|
from huggingface_hub import ( |
|
create_repo, |
|
get_hf_file_metadata, |
|
hf_hub_url, |
|
repo_type_and_id_from_hf_id, |
|
upload_folder, |
|
) |
|
from huggingface_hub.utils import EntryNotFoundError |
|
from packaging import version |
|
from PIL import Image |
|
from tqdm.auto import tqdm |
|
|
|
from . import FastDeployRuntimeModel |
|
from .configuration_utils import ConfigMixin |
|
from .utils import PPDIFFUSERS_CACHE, BaseOutput, deprecate, logging |
|
|
|
INDEX_FILE = "model_state.pdparams" |
|
CUSTOM_PIPELINE_FILE_NAME = "pipeline.py" |
|
DUMMY_MODULES_FOLDER = "ppdiffusers.utils" |
|
PADDLENLP_DUMMY_MODULES_FOLDER = "paddlenlp.transformers.utils" |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LOADABLE_CLASSES = { |
|
"ppdiffusers": { |
|
"ModelMixin": ["save_pretrained", "from_pretrained"], |
|
"SchedulerMixin": ["save_pretrained", "from_pretrained"], |
|
"DiffusionPipeline": ["save_pretrained", "from_pretrained"], |
|
"FastDeployRuntimeModel": ["save_pretrained", "from_pretrained"], |
|
}, |
|
"paddlenlp.transformers": { |
|
"PretrainedTokenizer": ["save_pretrained", "from_pretrained"], |
|
"PretrainedModel": ["save_pretrained", "from_pretrained"], |
|
"FeatureExtractionMixin": ["save_pretrained", "from_pretrained"], |
|
"ProcessorMixin": ["save_pretrained", "from_pretrained"], |
|
"ImageProcessingMixin": ["save_pretrained", "from_pretrained"], |
|
}, |
|
} |
|
|
|
ALL_IMPORTABLE_CLASSES = {} |
|
for library in LOADABLE_CLASSES: |
|
ALL_IMPORTABLE_CLASSES.update(LOADABLE_CLASSES[library]) |
|
|
|
|
|
@dataclass |
|
class ImagePipelineOutput(BaseOutput): |
|
""" |
|
Output class for image pipelines. |
|
|
|
Args: |
|
images (`List[PIL.Image.Image]` or `np.ndarray`) |
|
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width, |
|
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline. |
|
""" |
|
|
|
images: Union[List[PIL.Image.Image], np.ndarray] |
|
|
|
|
|
@dataclass |
|
class AudioPipelineOutput(BaseOutput): |
|
""" |
|
Output class for audio pipelines. |
|
|
|
Args: |
|
audios (`np.ndarray`) |
|
List of denoised samples of shape `(batch_size, num_channels, sample_rate)`. Numpy array present the |
|
denoised audio samples of the diffusion pipeline. |
|
""" |
|
|
|
audios: np.ndarray |
|
|
|
|
|
class DiffusionPipeline(ConfigMixin): |
|
r""" |
|
Base class for all models. |
|
|
|
[`DiffusionPipeline`] takes care of storing all components (models, schedulers, processors) for diffusion pipelines |
|
and handles methods for loading, downloading and saving models as well as a few methods common to all pipelines to: |
|
|
|
- move all Paddle modules to the device of your choice |
|
- enabling/disabling the progress bar for the denoising iteration |
|
|
|
Class attributes: |
|
|
|
- **config_name** (`str`) -- name of the config file that will store the class and module names of all |
|
- **_optional_components** (List[`str`]) -- list of all components that are optional so they don't have to be |
|
passed for the pipeline to function (should be overridden by subclasses). |
|
""" |
|
config_name = "model_index.json" |
|
_optional_components = [] |
|
|
|
def register_modules(self, **kwargs): |
|
|
|
from . import pipelines |
|
|
|
for name, module in kwargs.items(): |
|
|
|
if module is None: |
|
register_dict = {name: (None, None)} |
|
else: |
|
|
|
if "paddlenlp" in module.__module__.split(".") or "ppnlp_patch_utils" in module.__module__.split("."): |
|
library = "paddlenlp.transformers" |
|
else: |
|
library = module.__module__.split(".")[0] |
|
|
|
|
|
pipeline_dir = module.__module__.split(".")[-2] if len(module.__module__.split(".")) > 2 else None |
|
path = module.__module__.split(".") |
|
is_pipeline_module = pipeline_dir in path and hasattr(pipelines, pipeline_dir) |
|
|
|
|
|
|
|
|
|
if library not in LOADABLE_CLASSES or is_pipeline_module: |
|
library = pipeline_dir |
|
|
|
|
|
class_name = module.__class__.__name__ |
|
|
|
register_dict = {name: (library, class_name)} |
|
|
|
|
|
self.register_to_config(**register_dict) |
|
|
|
|
|
setattr(self, name, module) |
|
|
|
def save_pretrained(self, save_directory: Union[str, os.PathLike]): |
|
""" |
|
Save all variables of the pipeline that can be saved and loaded as well as the pipelines configuration file to |
|
a directory. A pipeline variable can be saved and loaded if its class implements both a save and loading |
|
method. The pipeline can easily be re-loaded using the `[`~DiffusionPipeline.from_pretrained`]` class method. |
|
|
|
Arguments: |
|
save_directory (`str` or `os.PathLike`): |
|
Directory to which to save. Will be created if it doesn't exist. |
|
""" |
|
self.save_config(save_directory) |
|
|
|
model_index_dict = dict(self.config) |
|
model_index_dict.pop("_class_name") |
|
|
|
model_index_dict.pop("_diffusers_paddle_version", None) |
|
model_index_dict.pop("_diffusers_version", None) |
|
model_index_dict.pop("_ppdiffusers_version", None) |
|
model_index_dict.pop("_module", None) |
|
|
|
expected_modules, optional_kwargs = self._get_signature_keys(self) |
|
|
|
def is_saveable_module(name, value): |
|
if name not in expected_modules: |
|
return False |
|
if name in self._optional_components and value[0] is None: |
|
return False |
|
return True |
|
|
|
model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)} |
|
|
|
for pipeline_component_name in model_index_dict.keys(): |
|
sub_model = getattr(self, pipeline_component_name) |
|
|
|
model_cls = sub_model.__class__ |
|
|
|
save_method_name = None |
|
|
|
for library_name, library_classes in LOADABLE_CLASSES.items(): |
|
library = importlib.import_module(library_name) |
|
for base_class, save_load_methods in library_classes.items(): |
|
class_candidate = getattr(library, base_class, None) |
|
if class_candidate is not None and issubclass(model_cls, class_candidate): |
|
|
|
save_method_name = save_load_methods[0] |
|
break |
|
if save_method_name is not None: |
|
break |
|
|
|
save_method = getattr(sub_model, save_method_name) |
|
save_method(os.path.join(save_directory, pipeline_component_name)) |
|
|
|
def save_to_hf_hub( |
|
self, |
|
repo_id: str, |
|
private: Optional[bool] = None, |
|
commit_message: Optional[str] = None, |
|
revision: Optional[str] = None, |
|
create_pr: bool = False, |
|
): |
|
""" |
|
Uploads all elements of this pipeline to a new HuggingFace Hub repository. |
|
Args: |
|
repo_id (str): Repository name for your model/tokenizer in the Hub. |
|
private (bool, optional): Whether the model/tokenizer is set to private |
|
commit_message (str, optional) — The summary / title / first line of the generated commit. Defaults to: f"Upload {path_in_repo} with huggingface_hub" |
|
revision (str, optional) — The git revision to commit from. Defaults to the head of the "main" branch. |
|
create_pr (boolean, optional) — Whether or not to create a Pull Request with that commit. Defaults to False. |
|
If revision is not set, PR is opened against the "main" branch. If revision is set and is a branch, PR is opened against this branch. |
|
If revision is set and is not a branch name (example: a commit oid), an RevisionNotFoundError is returned by the server. |
|
|
|
Returns: The url of the commit of your model in the given repository. |
|
""" |
|
repo_url = create_repo(repo_id, private=private, exist_ok=True) |
|
|
|
|
|
|
|
_, repo_owner, repo_name = repo_type_and_id_from_hf_id(repo_url) |
|
|
|
repo_id = f"{repo_owner}/{repo_name}" |
|
|
|
|
|
try: |
|
get_hf_file_metadata(hf_hub_url(repo_id=repo_id, filename="README.md", revision=revision)) |
|
has_readme = True |
|
except EntryNotFoundError: |
|
has_readme = False |
|
|
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
|
|
self.save_pretrained(tmp_dir) |
|
|
|
logger.info("README.md not found, adding the default README.md") |
|
if not has_readme: |
|
with open(os.path.join(tmp_dir, "README.md"), "w") as f: |
|
f.write(f"---\nlibrary_name: ppdiffusers\n---\n# {repo_id}") |
|
|
|
|
|
logger.info(f"Pushing to the {repo_id}. This might take a while") |
|
return upload_folder( |
|
repo_id=repo_id, |
|
repo_type="model", |
|
folder_path=tmp_dir, |
|
commit_message=commit_message, |
|
revision=revision, |
|
create_pr=create_pr, |
|
) |
|
|
|
def to(self, paddle_device: Optional[str] = None): |
|
if paddle_device is None: |
|
return self |
|
|
|
module_names, _, _ = self.extract_init_dict(dict(self.config)) |
|
for name in module_names.keys(): |
|
module = getattr(self, name) |
|
if isinstance(module, nn.Layer): |
|
if module.dtype == paddle.float16 and str(paddle_device) in ["cpu"]: |
|
logger.warning( |
|
"Pipelines loaded with `paddle_dtype=paddle.float16` cannot run with `cpu` device. It" |
|
" is not recommended to move them to `cpu` as running them will fail. Please make" |
|
" sure to use an accelerator to run the pipeline in inference, due to the lack of" |
|
" support for`float16` operations on this device in Paddle. Please, remove the" |
|
" `paddle_dtype=paddle.float16` argument, or use another device for inference." |
|
) |
|
module.to(paddle_device) |
|
return self |
|
|
|
@property |
|
def device(self): |
|
r""" |
|
Returns: |
|
`paddle.device`: The paddle device on which the pipeline is located. |
|
""" |
|
module_names, _, _ = self.extract_init_dict(dict(self.config)) |
|
for name in module_names.keys(): |
|
module = getattr(self, name) |
|
if isinstance(module, nn.Layer): |
|
return module.place |
|
return "cpu" |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs): |
|
r""" |
|
Instantiate a Paddle diffusion pipeline from pre-trained pipeline weights. |
|
|
|
The pipeline is set in evaluation mode by default using `model.eval()` (Dropout modules are deactivated). |
|
|
|
The warning *Weights from XXX not initialized from pretrained model* means that the weights of XXX do not come |
|
pretrained with the rest of the model. It is up to you to train those weights with a downstream fine-tuning |
|
task. |
|
|
|
The warning *Weights from XXX not used in YYY* means that the layer XXX is not used by YYY, therefore those |
|
weights are discarded. |
|
|
|
Parameters: |
|
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): |
|
Can be either: |
|
|
|
- A string, the *model id* of a pretrained pipeline hosted inside in `https://bj.bcebos.com/paddlenlp/models/community`. |
|
like `CompVis/stable-diffusion-v1-4`, `CompVis/ldm-text2im-large-256`. |
|
- A path to a *directory* containing pipeline weights saved using |
|
[`~DiffusionPipeline.save_pretrained`], e.g., `./my_pipeline_directory/`. |
|
paddle_dtype (`str` or `paddle.dtype`, *optional*): |
|
Override the default `paddle.dtype` and load the model under this dtype. If `"auto"` is passed the dtype |
|
will be automatically derived from the model's weights. |
|
output_loading_info(`bool`, *optional*, defaults to `False`): |
|
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. |
|
from_hf_hub (bool, *optional*): |
|
Whether to load from Hugging Face Hub. Defaults to False |
|
kwargs (remaining dictionary of keyword arguments, *optional*): |
|
Can be used to overwrite load - and saveable variables - *i.e.* the pipeline components - of the |
|
specific pipeline class. The overwritten components are then directly passed to the pipelines |
|
`__init__` method. See example below for more information. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from ppdiffusers import DiffusionPipeline |
|
|
|
>>> # Download pipeline from bos and cache. |
|
>>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256") |
|
|
|
>>> # Download pipeline that requires an authorization token |
|
>>> # For more information on access tokens, please refer to this section |
|
>>> # of the documentation](https://huggingface.co/docs/hub/security-tokens) |
|
>>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
|
|
>>> # Use a different scheduler |
|
>>> from ppdiffusers import LMSDiscreteScheduler |
|
|
|
>>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config) |
|
>>> pipeline.scheduler = scheduler |
|
``` |
|
""" |
|
cache_dir = kwargs.pop("cache_dir", PPDIFFUSERS_CACHE) |
|
paddle_dtype = kwargs.pop("paddle_dtype", None) |
|
|
|
|
|
|
|
runtime_options = kwargs.pop("runtime_options", None) |
|
from_hf_hub = kwargs.pop("from_hf_hub", False) |
|
|
|
|
|
if not os.path.isdir(pretrained_model_name_or_path): |
|
config_dict = cls.load_config( |
|
pretrained_model_name_or_path, |
|
cache_dir=cache_dir, |
|
from_hf_hub=from_hf_hub, |
|
) |
|
else: |
|
config_dict = cls.load_config(pretrained_model_name_or_path) |
|
|
|
|
|
if cls != DiffusionPipeline: |
|
pipeline_class = cls |
|
else: |
|
diffusers_module = importlib.import_module(cls.__module__.split(".")[0]) |
|
pipeline_class = getattr(diffusers_module, config_dict["_class_name"]) |
|
|
|
|
|
|
|
_ppdiffusers_version = ( |
|
config_dict["_diffusers_paddle_version"] |
|
if "_diffusers_paddle_version" in config_dict |
|
else config_dict["_ppdiffusers_version"] |
|
) |
|
if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse( |
|
version.parse(_ppdiffusers_version).base_version |
|
) <= version.parse("0.5.1"): |
|
from . import ( |
|
StableDiffusionInpaintPipeline, |
|
StableDiffusionInpaintPipelineLegacy, |
|
) |
|
|
|
pipeline_class = StableDiffusionInpaintPipelineLegacy |
|
|
|
deprecation_message = ( |
|
"You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the" |
|
f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For" |
|
" better inpainting results, we strongly suggest using Stable Diffusion's official inpainting" |
|
" checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your" |
|
f" checkpoint {pretrained_model_name_or_path} to the format of" |
|
" https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain" |
|
" the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0." |
|
) |
|
deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False) |
|
|
|
|
|
|
|
|
|
expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class) |
|
|
|
passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs} |
|
passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs} |
|
|
|
init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs) |
|
|
|
|
|
init_kwargs = {k: init_dict.pop(k) for k in optional_kwargs if k in init_dict} |
|
init_kwargs = {**init_kwargs, **passed_pipe_kwargs} |
|
|
|
|
|
def load_module(name, value): |
|
if value[0] is None: |
|
return False |
|
if name in passed_class_obj and passed_class_obj[name] is None: |
|
return False |
|
return True |
|
|
|
init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)} |
|
|
|
if len(unused_kwargs) > 0: |
|
logger.warning( |
|
f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored." |
|
) |
|
|
|
from . import pipelines |
|
|
|
|
|
for name, (library_name, class_name) in init_dict.items(): |
|
|
|
if library_name == "diffusers_paddle": |
|
library_name = "ppdiffusers" |
|
|
|
is_pipeline_module = hasattr(pipelines, library_name) |
|
loaded_sub_model = None |
|
|
|
|
|
if name in passed_class_obj: |
|
|
|
if not is_pipeline_module: |
|
library = importlib.import_module(library_name) |
|
class_obj = getattr(library, class_name) |
|
importable_classes = LOADABLE_CLASSES[library_name] |
|
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} |
|
|
|
expected_class_obj = None |
|
for class_name, class_candidate in class_candidates.items(): |
|
if class_candidate is not None and issubclass(class_obj, class_candidate): |
|
expected_class_obj = class_candidate |
|
|
|
if not issubclass(passed_class_obj[name].__class__, expected_class_obj): |
|
raise ValueError( |
|
f"{passed_class_obj[name]} is of type: {type(passed_class_obj[name])}, but should be" |
|
f" {expected_class_obj}" |
|
) |
|
else: |
|
logger.warning( |
|
f"You have passed a non-standard module {passed_class_obj[name]}. We cannot verify whether it" |
|
" has the correct type" |
|
) |
|
|
|
|
|
loaded_sub_model = passed_class_obj[name] |
|
elif is_pipeline_module: |
|
pipeline_module = getattr(pipelines, library_name) |
|
class_obj = getattr(pipeline_module, class_name) |
|
importable_classes = ALL_IMPORTABLE_CLASSES |
|
class_candidates = {c: class_obj for c in importable_classes.keys()} |
|
else: |
|
|
|
library = importlib.import_module(library_name) |
|
|
|
class_obj = getattr(library, class_name) |
|
importable_classes = LOADABLE_CLASSES[library_name] |
|
class_candidates = {c: getattr(library, c, None) for c in importable_classes.keys()} |
|
|
|
if loaded_sub_model is None: |
|
load_method_name = None |
|
for class_name, class_candidate in class_candidates.items(): |
|
if class_candidate is not None and issubclass(class_obj, class_candidate): |
|
load_method_name = importable_classes[class_name][1] |
|
|
|
if load_method_name is None: |
|
none_module = class_obj.__module__ |
|
is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith( |
|
PADDLENLP_DUMMY_MODULES_FOLDER |
|
) |
|
if is_dummy_path and "dummy" in none_module: |
|
|
|
class_obj() |
|
|
|
raise ValueError( |
|
f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have" |
|
f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}." |
|
) |
|
|
|
load_method = getattr(class_obj, load_method_name) |
|
loading_kwargs = { |
|
"from_hf_hub": from_hf_hub, |
|
"cache_dir": cache_dir, |
|
} |
|
|
|
if issubclass(class_obj, FastDeployRuntimeModel): |
|
if isinstance(runtime_options, dict): |
|
options = runtime_options.get(name, None) |
|
else: |
|
options = runtime_options |
|
loading_kwargs["runtime_options"] = options |
|
|
|
if os.path.isdir(pretrained_model_name_or_path): |
|
model_path_dir = os.path.join(pretrained_model_name_or_path, name) |
|
elif from_hf_hub: |
|
model_path_dir = pretrained_model_name_or_path |
|
loading_kwargs["subfolder"] = name |
|
else: |
|
|
|
model_path_dir = pretrained_model_name_or_path + "/" + name |
|
|
|
loaded_sub_model = load_method(model_path_dir, **loading_kwargs) |
|
|
|
|
|
if isinstance(loaded_sub_model, nn.Layer): |
|
if paddle_dtype is not None and next(loaded_sub_model.named_parameters())[1].dtype != paddle_dtype: |
|
loaded_sub_model = loaded_sub_model.to(dtype=paddle_dtype) |
|
|
|
loaded_sub_model.eval() |
|
|
|
init_kwargs[name] = loaded_sub_model |
|
|
|
|
|
missing_modules = set(expected_modules) - set(init_kwargs.keys()) |
|
passed_modules = list(passed_class_obj.keys()) |
|
optional_modules = pipeline_class._optional_components |
|
if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules): |
|
for module in missing_modules: |
|
init_kwargs[module] = passed_class_obj.get(module, None) |
|
elif len(missing_modules) > 0: |
|
passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs |
|
raise ValueError( |
|
f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed." |
|
) |
|
|
|
|
|
model = pipeline_class(**init_kwargs) |
|
return model |
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"): |
|
r""" |
|
Enable sliced attention computation. |
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention |
|
in several steps. This is useful to save some memory in exchange for a small speed decrease. |
|
Args: |
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`): |
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If |
|
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is |
|
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim` |
|
must be a multiple of `slice_size`. |
|
""" |
|
self.set_attention_slice(slice_size) |
|
|
|
def disable_attention_slicing(self): |
|
r""" |
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go |
|
back to computing attention in one step. |
|
""" |
|
|
|
self.enable_attention_slicing(None) |
|
|
|
def set_attention_slice(self, slice_size: Optional[int]): |
|
module_names, _, _ = self.extract_init_dict(dict(self.config)) |
|
for module_name in module_names: |
|
module = getattr(self, module_name) |
|
if isinstance(module, nn.Layer) and hasattr(module, "set_attention_slice"): |
|
module.set_attention_slice(slice_size) |
|
|
|
@staticmethod |
|
def _get_signature_keys(obj): |
|
parameters = inspect.signature(obj.__init__).parameters |
|
required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty} |
|
optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty}) |
|
expected_modules = set(required_parameters.keys()) - set(["self"]) |
|
return expected_modules, optional_parameters |
|
|
|
@property |
|
def components(self) -> Dict[str, Any]: |
|
r""" |
|
|
|
The `self.components` property can be useful to run different pipelines with the same weights and |
|
configurations to not have to re-allocate memory. |
|
|
|
Examples: |
|
|
|
```py |
|
>>> from ppdiffusers import ( |
|
... StableDiffusionPipeline, |
|
... StableDiffusionImg2ImgPipeline, |
|
... StableDiffusionInpaintPipeline, |
|
... ) |
|
|
|
>>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") |
|
>>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components) |
|
>>> inpaint = StableDiffusionInpaintPipeline(**text2img.components) |
|
``` |
|
|
|
Returns: |
|
A dictionaly containing all the modules needed to initialize the pipeline. |
|
""" |
|
expected_modules, optional_parameters = self._get_signature_keys(self) |
|
components = { |
|
k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters |
|
} |
|
|
|
if set(components.keys()) != expected_modules: |
|
raise ValueError( |
|
f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected" |
|
f" {expected_modules} to be defined, but {components} are defined." |
|
) |
|
|
|
return components |
|
|
|
@staticmethod |
|
def numpy_to_pil(images): |
|
""" |
|
Convert a numpy image or a batch of images to a PIL image. |
|
""" |
|
if images.ndim == 3: |
|
images = images[None, ...] |
|
images = (images * 255).round().astype("uint8") |
|
if images.shape[-1] == 1: |
|
|
|
pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images] |
|
else: |
|
pil_images = [Image.fromarray(image) for image in images] |
|
|
|
return pil_images |
|
|
|
def progress_bar(self, iterable=None, total=None): |
|
if not hasattr(self, "_progress_bar_config"): |
|
self._progress_bar_config = {} |
|
elif not isinstance(self._progress_bar_config, dict): |
|
raise ValueError( |
|
f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}." |
|
) |
|
|
|
if iterable is not None: |
|
return tqdm(iterable, **self._progress_bar_config) |
|
elif total is not None: |
|
return tqdm(total=total, **self._progress_bar_config) |
|
else: |
|
raise ValueError("Either `total` or `iterable` has to be defined.") |
|
|
|
def set_progress_bar_config(self, **kwargs): |
|
self._progress_bar_config = kwargs |
|
|