|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import paddle |
|
from paddle import nn |
|
|
|
from paddlenlp.transformers import ( |
|
CLIPPretrainedModel, |
|
CLIPVisionConfig, |
|
CLIPVisionModel, |
|
) |
|
|
|
from ...models.attention import BasicTransformerBlock |
|
from ...utils import logging |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class PaintByExampleImageEncoder(CLIPPretrainedModel): |
|
config_class = CLIPVisionConfig |
|
|
|
def __init__(self, config: CLIPVisionConfig): |
|
super().__init__(config) |
|
self.projection_dim = config.projection_dim |
|
|
|
self.model = CLIPVisionModel(config) |
|
|
|
self.mapper = PaintByExampleMapper(config) |
|
self.final_layer_norm = nn.LayerNorm(config.hidden_size) |
|
self.proj_out = nn.Linear(config.hidden_size, self.projection_dim) |
|
|
|
|
|
self.uncond_vector = self.create_parameter( |
|
[1, 1, self.projection_dim], |
|
dtype=paddle.get_default_dtype(), |
|
default_initializer=nn.initializer.Assign(paddle.rand((1, 1, self.projection_dim))), |
|
) |
|
|
|
def forward(self, pixel_values): |
|
clip_output = self.model(pixel_values=pixel_values) |
|
latent_states = clip_output.pooler_output |
|
latent_states = self.mapper(latent_states[:, None]) |
|
latent_states = self.final_layer_norm(latent_states) |
|
latent_states = self.proj_out(latent_states) |
|
return latent_states |
|
|
|
|
|
class PaintByExampleMapper(nn.Layer): |
|
def __init__(self, config): |
|
super().__init__() |
|
num_layers = (config.num_hidden_layers + 1) // 5 |
|
hid_size = config.hidden_size |
|
num_heads = 1 |
|
self.blocks = nn.LayerList( |
|
[ |
|
BasicTransformerBlock(hid_size, num_heads, hid_size, activation_fn="gelu", attention_bias=True) |
|
for _ in range(num_layers) |
|
] |
|
) |
|
|
|
def forward(self, hidden_states): |
|
for block in self.blocks: |
|
hidden_states = block(hidden_states) |
|
|
|
return hidden_states |
|
|