lora_test / ppdiffusers /utils /dummy_paddle_objects.py
1toTree's picture
Upload with huggingface_hub
21231ee
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is autogenerated by the command `make fix-copies`, do not edit.
# flake8: noqa
from . import DummyObject, requires_backends
class ModelMixin(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class AutoencoderKL(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class PriorTransformer(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class Transformer2DModel(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class UNet1DModel(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class UNet2DConditionModel(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class UNet2DModel(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class VQModel(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
def get_constant_schedule(*args, **kwargs):
requires_backends(get_constant_schedule, ["paddle"])
def get_constant_schedule_with_warmup(*args, **kwargs):
requires_backends(get_constant_schedule_with_warmup, ["paddle"])
def get_cosine_schedule_with_warmup(*args, **kwargs):
requires_backends(get_cosine_schedule_with_warmup, ["paddle"])
def get_cosine_with_hard_restarts_schedule_with_warmup(*args, **kwargs):
requires_backends(get_cosine_with_hard_restarts_schedule_with_warmup, ["paddle"])
def get_linear_schedule_with_warmup(*args, **kwargs):
requires_backends(get_linear_schedule_with_warmup, ["paddle"])
def get_polynomial_decay_schedule_with_warmup(*args, **kwargs):
requires_backends(get_polynomial_decay_schedule_with_warmup, ["paddle"])
def get_scheduler(*args, **kwargs):
requires_backends(get_scheduler, ["paddle"])
class DiffusionPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class DanceDiffusionPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class DDIMPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class DDPMPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class KarrasVePipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class LDMPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class LDMSuperResolutionPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class KDPM2AncestralDiscreteScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class KDPM2DiscreteScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class PNDMPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class RePaintPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class ScoreSdeVePipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class ScoreSdeVpPipeline(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class DDIMScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class DDPMScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class DPMSolverMultistepScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class DPMSolverSinglestepScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class EulerAncestralDiscreteScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class PreconfigEulerAncestralDiscreteScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class EulerDiscreteScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class HeunDiscreteScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class IPNDMScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class KarrasVeScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class PNDMScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class RePaintScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class SchedulerMixin(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class ScoreSdeVeScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class UnCLIPScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class VQDiffusionScheduler(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
class EMAModel(metaclass=DummyObject):
_backends = ["paddle"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["paddle"])
@classmethod
def from_config(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])
@classmethod
def from_pretrained(cls, *args, **kwargs):
requires_backends(cls, ["paddle"])