Spaces:
Runtime error
Runtime error
Commit
·
edcffc5
0
Parent(s):
Duplicate from katielink/brain_tumor_segmentation
Browse filesCo-authored-by: Katie Link <[email protected]>
- .gitattributes +31 -0
- README.md +16 -0
- app.py +167 -0
- examples/BRATS_485.nii.gz +3 -0
- examples/BRATS_486.nii.gz +3 -0
- requirements.txt +2 -0
.gitattributes
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Brain Tumor Segmentation
|
3 |
+
emoji: 🧠
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: red
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.1.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: other
|
11 |
+
tags:
|
12 |
+
- monai
|
13 |
+
duplicated_from: katielink/brain_tumor_segmentation
|
14 |
+
---
|
15 |
+
|
16 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from monai import bundle
|
5 |
+
from monai.transforms import (
|
6 |
+
Compose,
|
7 |
+
LoadImaged,
|
8 |
+
EnsureChannelFirstd,
|
9 |
+
Orientationd,
|
10 |
+
NormalizeIntensityd,
|
11 |
+
Activationsd,
|
12 |
+
AsDiscreted,
|
13 |
+
ScaleIntensityd,
|
14 |
+
)
|
15 |
+
|
16 |
+
# Define the bundle name and path for downloading
|
17 |
+
BUNDLE_NAME = 'spleen_ct_segmentation_v0.1.0'
|
18 |
+
BUNDLE_PATH = os.path.join(torch.hub.get_dir(), 'bundle', BUNDLE_NAME)
|
19 |
+
|
20 |
+
# Title and description
|
21 |
+
title = '<h1 style="text-align: center;">Segment Brain Tumors with MONAI! 🧠 </h1>'
|
22 |
+
description = """
|
23 |
+
## 🚀 To run
|
24 |
+
|
25 |
+
Upload a brain MRI image file, or try out one of the examples below!
|
26 |
+
If you want to see a different slice, update the slider.
|
27 |
+
|
28 |
+
More details on the model can be found [here!](https://huggingface.co/katielink/brats_mri_segmentation_v0.1.0)
|
29 |
+
|
30 |
+
## ⚠️ Disclaimer
|
31 |
+
|
32 |
+
This is an example, not to be used for diagnostic purposes.
|
33 |
+
"""
|
34 |
+
|
35 |
+
references = """
|
36 |
+
## 👀 References
|
37 |
+
|
38 |
+
1. Myronenko, Andriy. "3D MRI brain tumor segmentation using autoencoder regularization." International MICCAI Brainlesion Workshop. Springer, Cham, 2018. https://arxiv.org/abs/1810.11654.
|
39 |
+
2. Menze BH, et al. "The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)", IEEE Transactions on Medical Imaging 34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694
|
40 |
+
3. Bakas S, et al. "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data, 4:170117 (2017) DOI:10.1038/sdata.2017.117
|
41 |
+
"""
|
42 |
+
|
43 |
+
examples = [
|
44 |
+
['examples/BRATS_485.nii.gz', 65],
|
45 |
+
['examples/BRATS_486.nii.gz', 80]
|
46 |
+
]
|
47 |
+
|
48 |
+
# Load the MONAI pretrained model from Hugging Face Hub
|
49 |
+
model, _, _ = bundle.load(
|
50 |
+
name = BUNDLE_NAME,
|
51 |
+
source = 'huggingface_hub',
|
52 |
+
repo = 'katielink/brats_mri_segmentation_v0.1.0',
|
53 |
+
load_ts_module=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
# Use GPU if available
|
57 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
58 |
+
|
59 |
+
# Load the parser from the MONAI bundle's inference config
|
60 |
+
parser = bundle.load_bundle_config(BUNDLE_PATH, 'inference.json')
|
61 |
+
|
62 |
+
# Compose the preprocessing transforms
|
63 |
+
preproc_transforms = Compose(
|
64 |
+
[
|
65 |
+
LoadImaged(keys=["image"]),
|
66 |
+
EnsureChannelFirstd(keys="image"),
|
67 |
+
Orientationd(keys=["image"], axcodes="RAS"),
|
68 |
+
NormalizeIntensityd(keys="image", nonzero=True, channel_wise=True),
|
69 |
+
]
|
70 |
+
)
|
71 |
+
|
72 |
+
# Get the inferer from the bundle's inference config
|
73 |
+
inferer = parser.get_parsed_content(
|
74 |
+
'inferer',
|
75 |
+
lazy=True, eval_expr=True, instantiate=True
|
76 |
+
)
|
77 |
+
|
78 |
+
# Compose the postprocessing transforms
|
79 |
+
post_transforms = Compose(
|
80 |
+
[
|
81 |
+
Activationsd(keys='pred', sigmoid=True),
|
82 |
+
AsDiscreted(keys='pred', threshold=0.5),
|
83 |
+
ScaleIntensityd(keys='image', minv=0., maxv=1.)
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
|
88 |
+
# Define the predict function for the demo
|
89 |
+
def predict(input_file, z_axis, model=model, device=device):
|
90 |
+
# Load and process data in MONAI format
|
91 |
+
data = {'image': [input_file.name]}
|
92 |
+
data = preproc_transforms(data)
|
93 |
+
|
94 |
+
# Run inference and post-process predicted labels
|
95 |
+
model.to(device)
|
96 |
+
model.eval()
|
97 |
+
with torch.no_grad():
|
98 |
+
inputs = data['image'].to(device)
|
99 |
+
data['pred'] = inferer(inputs=inputs[None,...], network=model)
|
100 |
+
data = post_transforms(data)
|
101 |
+
|
102 |
+
# Convert tensors back to numpy arrays
|
103 |
+
data['image'] = data['image'].numpy()
|
104 |
+
data['pred'] = data['pred'].cpu().detach().numpy()
|
105 |
+
|
106 |
+
# Magnetic resonance imaging sequences
|
107 |
+
t1c = data['image'][0, :, :, z_axis] # T1-weighted, post contrast
|
108 |
+
t1 = data['image'][1, :, :, z_axis] # T1-weighted, pre contrast
|
109 |
+
t2 = data['image'][2, :, :, z_axis] # T2-weighted
|
110 |
+
flair = data['image'][3, :, :, z_axis] # FLAIR
|
111 |
+
|
112 |
+
# BraTS labels
|
113 |
+
tc = data['pred'][0, 0, :, :, z_axis] # Tumor core
|
114 |
+
wt = data['pred'][0, 1, :, :, z_axis] # Whole tumor
|
115 |
+
et = data['pred'][0, 2, :, :, z_axis] # Enhancing tumor
|
116 |
+
|
117 |
+
return [t1c, t1, t2, flair], [tc, wt, et]
|
118 |
+
|
119 |
+
|
120 |
+
# Use blocks to set up a more complex demo
|
121 |
+
with gr.Blocks() as demo:
|
122 |
+
|
123 |
+
# Show title and description
|
124 |
+
gr.Markdown(title)
|
125 |
+
gr.Markdown(description)
|
126 |
+
|
127 |
+
with gr.Row():
|
128 |
+
# Get the input file and slice slider as inputs
|
129 |
+
input_file = gr.File(label='input file')
|
130 |
+
z_axis = gr.Slider(0, 200, label='slice', value=50)
|
131 |
+
|
132 |
+
with gr.Row():
|
133 |
+
# Show the button with custom label
|
134 |
+
button = gr.Button("Segment Tumor!")
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column():
|
138 |
+
# Show the input image with different MR sequences
|
139 |
+
input_image = gr.Gallery(label='input MRI sequences (T1+, T1, T2, FLAIR)')
|
140 |
+
|
141 |
+
with gr.Column():
|
142 |
+
# Show the segmentation labels
|
143 |
+
output_segmentation = gr.Gallery(label='output segmentations (TC, WT, ET)')
|
144 |
+
|
145 |
+
|
146 |
+
# Run prediction on button click
|
147 |
+
button.click(
|
148 |
+
predict,
|
149 |
+
inputs=[input_file, z_axis],
|
150 |
+
outputs=[input_image, output_segmentation]
|
151 |
+
)
|
152 |
+
|
153 |
+
# Have some example for the user to try out
|
154 |
+
examples = gr.Examples(
|
155 |
+
examples=examples,
|
156 |
+
inputs=[input_file, z_axis],
|
157 |
+
outputs=[input_image, output_segmentation],
|
158 |
+
fn=predict,
|
159 |
+
cache_examples=False
|
160 |
+
)
|
161 |
+
|
162 |
+
# Show references at the bottom of the demo
|
163 |
+
gr.Markdown(references)
|
164 |
+
|
165 |
+
|
166 |
+
# Launch the demo
|
167 |
+
demo.launch()
|
examples/BRATS_485.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1de6be1eeb49c788baa286a21d71546b2974bc300d5bc6ce4541e41854a0fefb
|
3 |
+
size 8327084
|
examples/BRATS_486.nii.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8957d67a50b39afd8210f3ca51a20c77ef1c92642800f91b50f16b27778f2b2
|
3 |
+
size 11111216
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
git+https://github.com/katielink/MONAI.git@4042-download-hf-hub-bundle
|
2 |
+
nibabel
|