robertselvam commited on
Commit
7ee3783
·
verified ·
1 Parent(s): 1dde3ad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -8
app.py CHANGED
@@ -5,7 +5,7 @@ import validators
5
  import requests
6
  import tempfile
7
  import gradio as gr
8
- import openai
9
  import re
10
  import json
11
  from transformers import pipeline
@@ -16,14 +16,19 @@ import pandas as pd
16
 
17
  class SentimentAnalyzer:
18
  def __init__(self):
19
- # self.model="facebook/bart-large-mnli"
20
- openai.api_key=os.getenv("OPENAI_API_KEY")
 
 
 
 
 
21
  def emotion_analysis(self,text):
22
  prompt = f""" Your task is find the top 3 emotion for this converstion {text}: <Sadness, Happiness, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
23
  you are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 3 result having the highest score]
24
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
25
  """
26
- response = openai.Completion.create(
27
  model="text-davinci-003",
28
  prompt=prompt,
29
  temperature=0,
@@ -77,7 +82,7 @@ class Summarizer:
77
  def __init__(self):
78
  openai.api_key=os.getenv("OPENAI_API_KEY")
79
  def generate_summary(self, text):
80
- model_engine = "text-davinci-003"
81
  prompt = f"""summarize the following conversation delimited by triple backticks. write within 30 words.```{text}``` """
82
  completions = openai.Completion.create(
83
  engine=model_engine,
@@ -97,7 +102,11 @@ sentiment = SentimentAnalyzer()
97
  class LangChain_Document_QA:
98
 
99
  def __init__(self):
100
- openai.api_key=os.getenv("OPENAI_API_KEY")
 
 
 
 
101
 
102
  def _add_text(self,history, text):
103
  history = history + [(text, None)]
@@ -171,8 +180,8 @@ class LangChain_Document_QA:
171
  Patient: ['''{text}''']
172
  Perform as Mental Healthcare Doctor Chatbot
173
  """
174
- response = openai.Completion.create(
175
- model="text-davinci-003",
176
  prompt=prompt,
177
  temperature=0,
178
  max_tokens=500,
 
5
  import requests
6
  import tempfile
7
  import gradio as gr
8
+ from openai import AzureOpenAI
9
  import re
10
  import json
11
  from transformers import pipeline
 
16
 
17
  class SentimentAnalyzer:
18
  def __init__(self):
19
+
20
+ self.client = AzureOpenAI(
21
+ api_key = os.getenv("AZURE_OPENAI_API_KEY"),
22
+ api_version = "2024-02-01",
23
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
24
+ )
25
+
26
  def emotion_analysis(self,text):
27
  prompt = f""" Your task is find the top 3 emotion for this converstion {text}: <Sadness, Happiness, Fear, Disgust, Anger> and it's emotion score for the Mental Healthcare Doctor Chatbot and patient conversation text.\
28
  you are analyze the text and provide the output in the following list format heigher to lower order: ["emotion1","emotion2","emotion3"][score1,score2,score3]''' [with top 3 result having the highest score]
29
  The scores should be in the range of 0.0 to 1.0, where 1.0 represents the highest intensity of the emotion.
30
  """
31
+ response = self.client.Completion.create(
32
  model="text-davinci-003",
33
  prompt=prompt,
34
  temperature=0,
 
82
  def __init__(self):
83
  openai.api_key=os.getenv("OPENAI_API_KEY")
84
  def generate_summary(self, text):
85
+ model_engine = "GPT3"
86
  prompt = f"""summarize the following conversation delimited by triple backticks. write within 30 words.```{text}``` """
87
  completions = openai.Completion.create(
88
  engine=model_engine,
 
102
  class LangChain_Document_QA:
103
 
104
  def __init__(self):
105
+ self.client = AzureOpenAI(
106
+ api_key = os.getenv("AZURE_OPENAI_API_KEY"),
107
+ api_version = "2024-02-01",
108
+ azure_endpoint = os.getenv("AZURE_OPENAI_ENDPOINT")
109
+ )
110
 
111
  def _add_text(self,history, text):
112
  history = history + [(text, None)]
 
180
  Patient: ['''{text}''']
181
  Perform as Mental Healthcare Doctor Chatbot
182
  """
183
+ response = self.client.Completion.create(
184
+ model="GPT3",
185
  prompt=prompt,
186
  temperature=0,
187
  max_tokens=500,