Spaces:
Sleeping
Sleeping
File size: 11,559 Bytes
e317e6a aab0441 f8a3bb0 9457e26 aab0441 e317e6a 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 54f3b3b 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 54f3b3b 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 40488ca e76b8cd 0ba90e2 40488ca 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 0db2a92 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 95ce447 0ba90e2 40488ca 0ba90e2 40488ca 238975c fadc3b5 0ba90e2 7a413bc 807d71b bd573cb 0ba90e2 e859d15 0ba90e2 3649991 0ba90e2 95ce447 0ba90e2 bbe15ac 0ba90e2 0332fe4 0ba90e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
from langchain.chains import ConversationalRetrievalChain
from langchain.document_loaders import UnstructuredFileLoader
from typing import List, Dict, Tuple
import gradio as gr
import validators
import requests
import mimetypes
import tempfile
import os
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import OpenAI
from langchain.prompts import PromptTemplate
from langchain.prompts.prompt import PromptTemplate
import pandas as pd
from langchain_experimental.agents.agent_toolkits.csv.base import create_csv_agent
# from langchain.agents import create_pandas_dataframe_agent
# from langchain.agents import ZeroShotAgent, Tool, AgentExecutor
from langchain.agents.agent_types import AgentType
# from langchain.agents import create_csv_agent
from langchain import OpenAI, LLMChain
class ChatDocumentQA:
def __init__(self) -> None:
pass
def _get_empty_state(self) -> Dict[str, None]:
"""Create an empty knowledge base."""
return {"knowledge_base": None}
def _extract_text_from_pdfs(self, file_paths: List[str]) -> List[str]:
"""Extract text content from PDF files.
Args:
file_paths (List[str]): List of file paths.
Returns:
List[str]: Extracted text from the PDFs.
"""
docs = []
loaders = [UnstructuredFileLoader(file_obj, strategy="fast") for file_obj in file_paths]
for loader in loaders:
docs.extend(loader.load())
return docs
def _get_content_from_url(self, urls: str) -> List[str]:
"""Fetch content from given URLs.
Args:
urls (str): Comma-separated URLs.
Returns:
List[str]: List of text content fetched from the URLs.
"""
file_paths = []
for url in urls.split(','):
if validators.url(url):
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36',}
r = requests.get(url, headers=headers)
if r.status_code != 200:
raise ValueError("Check the url of your file; returned status code %s" % r.status_code)
content_type = r.headers.get("content-type")
file_extension = mimetypes.guess_extension(content_type)
temp_file = tempfile.NamedTemporaryFile(suffix=file_extension, delete=False)
temp_file.write(r.content)
file_paths.append(temp_file.name)
docs = self._extract_text_from_pdfs(file_paths)
return docs
def _split_text_into_chunks(self, text: str) -> List[str]:
"""Split text into smaller chunks.
Args:
text (str): Input text to be split.
Returns:
List[str]: List of smaller text chunks.
"""
text_splitter = CharacterTextSplitter(separator="\n", chunk_size=500, chunk_overlap=100, length_function=len)
chunks = text_splitter.split_documents(text)
return chunks
def _create_vector_store_from_text_chunks(self, text_chunks: List[str]) -> FAISS:
"""Create a vector store from text chunks.
Args:
text_chunks (List[str]): List of text chunks.
Returns:
FAISS: Vector store created from the text chunks.
"""
embeddings = OpenAIEmbeddings()
return FAISS.from_documents(documents=text_chunks, embedding=embeddings)
def _create_conversation_chain(self,vectorstore):
_template = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question, in its original language.
Chat History: {chat_history}
Follow Up Input: {question}
Standalone question:"""
CONDENSE_QUESTION_PROMPT = PromptTemplate.from_template(_template)
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
# llm = ChatOpenAI(temperature=0)
llm=OpenAI(temperature=0)
return ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(),
condense_question_prompt=CONDENSE_QUESTION_PROMPT,
memory=memory)
def _get_documents_knowledge_base(self, file_paths: List[str]) -> Tuple[str, Dict[str, FAISS]]:
"""Build knowledge base from uploaded files.
Args:
file_paths (List[str]): List of file paths.
Returns:
Tuple[str, Dict]: Tuple containing a status message and the knowledge base.
"""
file_path = file_paths[0].name
file_extension = os.path.splitext(file_path)[1]
if file_extension == '.csv':
# agent = self.create_agent(file_path)
# tools = self.get_agent_tools(agent)
# memory,tools,prompt = self.create_memory_for_csv_qa(tools)
# agent_chain = self.create_agent_chain_for_csv_qa(memory,tools,prompt)
agent_chain = create_csv_agent(
OpenAI(temperature=0),
file_path,
verbose=True,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
return "file uploaded", {"knowledge_base": agent_chain}
else:
pdf_docs = [file_path.name for file_path in file_paths]
raw_text = self._extract_text_from_pdfs(pdf_docs)
text_chunks = self._split_text_into_chunks(raw_text)
vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
return "file uploaded", {"knowledge_base": vectorstore}
def _get_urls_knowledge_base(self, urls: str) -> Tuple[str, Dict[str, FAISS]]:
"""Build knowledge base from URLs.
Args:
urls (str): Comma-separated URLs.
Returns:
Tuple[str, Dict]: Tuple containing a status message and the knowledge base.
"""
webpage_text = self._get_content_from_url(urls)
text_chunks = self._split_text_into_chunks(webpage_text)
vectorstore = self._create_vector_store_from_text_chunks(text_chunks)
return "file uploaded", {"knowledge_base": vectorstore}
#************************
# csv qa
#************************
def create_agent(self,file_path):
agent_chain = create_csv_agent(
OpenAI(temperature=0),
file_path,
verbose=True,
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
)
return agent_chain
def get_agent_tools(self,agent):
# search = agent
tools = [
Tool(
name="dataframe qa",
func=agent.run,
description="useful for when you need to answer questions about table data and dataframe data",
)
]
return tools
def create_memory_for_csv_qa(self,tools):
prefix = """Have a conversation with a human, answering the following questions about table data and dataframe data as best you can. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
memory = ConversationBufferMemory(memory_key="chat_history",return_messages=True)
return memory,tools,prompt
def create_agent_chain_for_csv_qa(self,memory,tools,prompt):
llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=True, memory=memory
)
return agent_chain
def _get_response(self, message: str, chat_history: List[Tuple[str, str]], state: Dict[str, FAISS],file_paths) -> Tuple[str, List[Tuple[str, str]]]:
"""Get a response from the chatbot.
Args:
message (str): User's message/question.
chat_history (List[Tuple[str, str]]): List of chat history as tuples of (user_message, bot_response).
state (dict): State containing the knowledge base.
Returns:
Tuple[str, List[Tuple[str, str]]]: Tuple containing a status message and updated chat history.
"""
try:
if file_paths:
file_path = file_paths[0].name
file_extension = os.path.splitext(file_path)[1]
if file_extension == '.csv':
agent_chain = state["knowledge_base"]
response = agent_chain.run(input = message)
chat_history.append((message, response))
return "", chat_history
else:
vectorstore = state["knowledge_base"]
chat = self._create_conversation_chain(vectorstore)
print("chat_history",chat_history)
response = chat({"question": message,"chat_history": chat_history})
chat_history.append((message, response["answer"]))
return "", chat_history
except:
chat_history.append((message, "Please Upload Document or URL"))
return "", chat_history
def gradio_interface(self) -> None:
"""Create a Gradio interface for the chatbot."""
with gr.Blocks(css = "style.css" ,theme="freddyaboulton/test-blue") as demo:
gr.HTML("""<center class="darkblue" text-align:center;padding:30px;'><center>
<center><h1 class ="center" style="color:#fff">ADOPLE AI</h1></center>
<br><center><h1 style="color:#fff">Virtual Assistant Chatbot</h1></center>""")
state = gr.State(self._get_empty_state())
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=0.85):
msg = gr.Textbox(label="Question")
with gr.Column(scale=0.15):
file_output = gr.Textbox(label="File Status")
with gr.Row():
with gr.Column(scale=0.85):
clear = gr.ClearButton([msg, chatbot])
with gr.Column(scale=0.15):
upload_button = gr.UploadButton(
"Browse File",
file_types=[".txt", ".pdf", ".doc", ".docx", ".csv"],
file_count="multiple", variant="primary"
)
with gr.Row():
with gr.Column(scale=1):
input_url = gr.Textbox(label="urls")
input_url.submit(self._get_urls_knowledge_base, input_url, [file_output, state])
upload_button.upload(self._get_documents_knowledge_base, upload_button, [file_output, state])
msg.submit(self._get_response, [msg, chatbot, state,upload_button], [msg, chatbot])
demo.launch()
if __name__ == "__main__":
chatdocumentqa = ChatDocumentQA()
chatdocumentqa.gradio_interface() |