File size: 17,483 Bytes
6041051 a53bc87 6041051 a53bc87 6041051 a53bc87 6041051 d998065 6041051 44092b0 6041051 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import os, tempfile, qdrant_client
import streamlit as st
from llama_index.llms import OpenAI, Gemini, Cohere
from llama_index.embeddings import HuggingFaceEmbedding
from llama_index import SimpleDirectoryReader, ServiceContext, VectorStoreIndex, StorageContext
from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter
from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser
from llama_index.vector_stores import QdrantVectorStore, PineconeVectorStore
from pinecone import Pinecone
def reset_pipeline_generated():
if 'pipeline_generated' in st.session_state:
st.session_state['pipeline_generated'] = False
def upload_file():
file = st.file_uploader("Upload a file", on_change=reset_pipeline_generated)
if file is not None:
file_path = save_uploaded_file(file)
if file_path:
loaded_file = SimpleDirectoryReader(input_files=[file_path]).load_data()
print(f"Total documents: {len(loaded_file)}")
st.success(f"File uploaded successfully. Total documents loaded: {len(loaded_file)}")
#print(loaded_file)
return loaded_file
return None
@st.cache_data
def save_uploaded_file(uploaded_file):
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(uploaded_file.name)[1]) as tmp_file:
tmp_file.write(uploaded_file.getvalue())
return tmp_file.name
except Exception as e:
st.error(f"Error saving file: {e}")
return None
def select_llm():
st.header("Choose LLM")
llm_choice = st.selectbox("Select LLM", ["Gemini", "Cohere", "GPT-3.5", "GPT-4"], on_change=reset_pipeline_generated)
if llm_choice == "GPT-3.5":
llm = OpenAI(temperature=0.1, model="gpt-3.5-turbo-1106")
st.write(f"{llm_choice} selected")
elif llm_choice == "GPT-4":
llm = OpenAI(temperature=0.1, model="gpt-4-1106-preview")
st.write(f"{llm_choice} selected")
elif llm_choice == "Gemini":
llm = Gemini(model="models/gemini-pro")
st.write(f"{llm_choice} selected")
elif llm_choice == "Cohere":
llm = Cohere(model="command", api_key=os.environ['COHERE_API_TOKEN'])
st.write(f"{llm_choice} selected")
return llm, llm_choice
def select_embedding_model():
st.header("Choose Embedding Model")
col1, col2 = st.columns([2,1])
with col2:
st.markdown("""
[Embedding Models Leaderboard](https://huggingface.co/spaces/mteb/leaderboard)
""")
model_names = [
"BAAI/bge-small-en-v1.5",
"WhereIsAI/UAE-Large-V1",
"BAAI/bge-large-en-v1.5",
"khoa-klaytn/bge-small-en-v1.5-angle",
"BAAI/bge-base-en-v1.5",
"llmrails/ember-v1",
"jamesgpt1/sf_model_e5",
"thenlper/gte-large",
"infgrad/stella-base-en-v2",
"thenlper/gte-base"
]
selected_model = st.selectbox("Select Embedding Model", model_names, on_change=reset_pipeline_generated)
with st.spinner("Please wait") as status:
embed_model = HuggingFaceEmbedding(model_name=selected_model)
st.session_state['embed_model'] = embed_model
st.markdown(F"Embedding Model: {embed_model.model_name}")
st.markdown(F"Embed Batch Size: {embed_model.embed_batch_size}")
st.markdown(F"Embed Batch Size: {embed_model.max_length}")
return embed_model, selected_model
def select_node_parser():
st.header("Choose Node Parser")
col1, col2 = st.columns([4,1])
with col2:
st.markdown("""
[More Information](https://docs.llamaindex.ai/en/stable/module_guides/loading/node_parsers/root.html)
""")
parser_types = ["SentenceSplitter", "CodeSplitter", "SemanticSplitterNodeParser",
"TokenTextSplitter", "HTMLNodeParser", "JSONNodeParser", "MarkdownNodeParser"]
parser_type = st.selectbox("Select Node Parser", parser_types, on_change=reset_pipeline_generated)
parser_params = {}
if parser_type == "HTMLNodeParser":
tags = st.text_input("Enter tags separated by commas", "p, h1")
tag_list = tags.split(',')
parser = HTMLNodeParser(tags=tag_list)
parser_params = {'tags': tag_list}
elif parser_type == "JSONNodeParser":
parser = JSONNodeParser()
elif parser_type == "MarkdownNodeParser":
parser = MarkdownNodeParser()
elif parser_type == "CodeSplitter":
language = st.text_input("Language", "python")
chunk_lines = st.number_input("Chunk Lines", min_value=1, value=40)
chunk_lines_overlap = st.number_input("Chunk Lines Overlap", min_value=0, value=15)
max_chars = st.number_input("Max Chars", min_value=1, value=1500)
parser = CodeSplitter(language=language, chunk_lines=chunk_lines, chunk_lines_overlap=chunk_lines_overlap, max_chars=max_chars)
parser_params = {'language': language, 'chunk_lines': chunk_lines, 'chunk_lines_overlap': chunk_lines_overlap, 'max_chars': max_chars}
elif parser_type == "SentenceSplitter":
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
parser = SentenceSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}
elif parser_type == "SemanticSplitterNodeParser":
if 'embed_model' not in st.session_state:
st.warning("Please select an embedding model first.")
return None, None
embed_model = st.session_state['embed_model']
buffer_size = st.number_input("Buffer Size", min_value=1, value=1)
breakpoint_percentile_threshold = st.number_input("Breakpoint Percentile Threshold", min_value=0, max_value=100, value=95)
parser = SemanticSplitterNodeParser(buffer_size=buffer_size, breakpoint_percentile_threshold=breakpoint_percentile_threshold, embed_model=embed_model)
parser_params = {'buffer_size': buffer_size, 'breakpoint_percentile_threshold': breakpoint_percentile_threshold}
elif parser_type == "TokenTextSplitter":
chunk_size = st.number_input("Chunk Size", min_value=1, value=1024)
chunk_overlap = st.number_input("Chunk Overlap", min_value=0, value=20)
parser = TokenTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
parser_params = {'chunk_size': chunk_size, 'chunk_overlap': chunk_overlap}
# Save the parser type and parameters to the session state
st.session_state['node_parser_type'] = parser_type
st.session_state['node_parser_params'] = parser_params
return parser, parser_type
def select_response_synthesis_method():
st.header("Choose Response Synthesis Method")
col1, col2 = st.columns([4,1])
with col2:
st.markdown("""
[More Information](https://docs.llamaindex.ai/en/stable/module_guides/querying/response_synthesizers/response_synthesizers.html)
""")
response_modes = [
"refine",
"tree_summarize",
"compact",
"simple_summarize",
"accumulate",
"compact_accumulate"
]
selected_mode = st.selectbox("Select Response Mode", response_modes, on_change=reset_pipeline_generated)
response_mode = selected_mode
return response_mode, selected_mode
def select_vector_store():
st.header("Choose Vector Store")
vector_stores = ["Simple", "Pinecone", "Qdrant"]
selected_store = st.selectbox("Select Vector Store", vector_stores, on_change=reset_pipeline_generated)
vector_store = None
if selected_store == "Pinecone":
pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])
index = pc.Index("test")
vector_store = PineconeVectorStore(pinecone_index=index)
elif selected_store == "Qdrant":
client = qdrant_client.QdrantClient(location=":memory:")
vector_store = QdrantVectorStore(client=client, collection_name="sampledata")
st.write(selected_store)
return vector_store, selected_store
def generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store):
if vector_store is not None:
# Set storage context if vector_store is not None
storage_context = StorageContext.from_defaults(vector_store=vector_store)
else:
storage_context = None
# Create the service context
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)
# Create the vector index
vector_index = VectorStoreIndex.from_documents(documents=file, storage_context=storage_context, service_context=service_context, show_progress=True)
if storage_context:
vector_index.storage_context.persist(persist_dir="persist_dir")
# Create the query engine
query_engine = vector_index.as_query_engine(
response_mode=response_mode,
verbose=True,
)
return query_engine
def send_query():
query = st.session_state['query']
response = f"Response for the query: {query}"
st.markdown(response)
def generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode, vector_store_choice):
node_parser_params = st.session_state.get('node_parser_params', {})
print(node_parser_params)
code_snippet = "from llama_index.llms import OpenAI, Gemini, Cohere\n"
code_snippet += "from llama_index.embeddings import HuggingFaceEmbedding\n"
code_snippet += "from llama_index import ServiceContext, VectorStoreIndex, StorageContext\n"
code_snippet += "from llama_index.node_parser import SentenceSplitter, CodeSplitter, SemanticSplitterNodeParser, TokenTextSplitter\n"
code_snippet += "from llama_index.node_parser.file import HTMLNodeParser, JSONNodeParser, MarkdownNodeParser\n"
code_snippet += "from llama_index.vector_stores import MilvusVectorStore, QdrantVectorStore\n"
code_snippet += "import qdrant_client\n\n"
# LLM initialization
if llm_choice == "GPT-3.5":
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-3.5-turbo-1106')\n"
elif llm_choice == "GPT-4":
code_snippet += "llm = OpenAI(temperature=0.1, model='gpt-4-1106-preview')\n"
elif llm_choice == "Gemini":
code_snippet += "llm = Gemini(model='models/gemini-pro')\n"
elif llm_choice == "Cohere":
code_snippet += "llm = Cohere(model='command', api_key='<YOUR_API_KEY>') # Replace <YOUR_API_KEY> with your actual API key\n"
# Embedding model initialization
code_snippet += f"embed_model = HuggingFaceEmbedding(model_name='{embed_model_choice}')\n\n"
# Node parser initialization
node_parsers = {
"SentenceSplitter": f"SentenceSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
"CodeSplitter": f"CodeSplitter(language={node_parser_params.get('language', 'python')}, chunk_lines={node_parser_params.get('chunk_lines', 40)}, chunk_lines_overlap={node_parser_params.get('chunk_lines_overlap', 15)}, max_chars={node_parser_params.get('max_chars', 1500)})",
"SemanticSplitterNodeParser": f"SemanticSplitterNodeParser(buffer_size={node_parser_params.get('buffer_size', 1)}, breakpoint_percentile_threshold={node_parser_params.get('breakpoint_percentile_threshold', 95)}, embed_model=embed_model)",
"TokenTextSplitter": f"TokenTextSplitter(chunk_size={node_parser_params.get('chunk_size', 1024)}, chunk_overlap={node_parser_params.get('chunk_overlap', 20)})",
"HTMLNodeParser": f"HTMLNodeParser(tags={node_parser_params.get('tags', ['p', 'h1'])})",
"JSONNodeParser": "JSONNodeParser()",
"MarkdownNodeParser": "MarkdownNodeParser()"
}
code_snippet += f"node_parser = {node_parsers[node_parser_choice]}\n\n"
# Response mode
code_snippet += f"response_mode = '{response_mode}'\n\n"
# Vector store initialization
if vector_store_choice == "Pinecone":
code_snippet += "pc = Pinecone(api_key=os.environ['PINECONE_API_KEY'])\n"
code_snippet += "index = pc.Index('test')\n"
code_snippet += "vector_store = PineconeVectorStore(pinecone_index=index)\n"
elif vector_store_choice == "Qdrant":
code_snippet += "client = qdrant_client.QdrantClient(location=':memory:')\n"
code_snippet += "vector_store = QdrantVectorStore(client=client, collection_name='sampledata')\n"
elif vector_store_choice == "Simple":
code_snippet += "vector_store = None # Simple in-memory vector store selected\n"
code_snippet += "\n# Finalizing the RAG pipeline setup\n"
code_snippet += "if vector_store is not None:\n"
code_snippet += " storage_context = StorageContext.from_defaults(vector_store=vector_store)\n"
code_snippet += "else:\n"
code_snippet += " storage_context = None\n\n"
code_snippet += "service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model, node_parser=node_parser)\n\n"
code_snippet += "_file = 'path_to_your_file' # Replace with the path to your file\n"
code_snippet += "vector_index = VectorStoreIndex.from_documents(documents=_file, storage_context=storage_context, service_context=service_context, show_progress=True)\n"
code_snippet += "if storage_context:\n"
code_snippet += " vector_index.storage_context.persist(persist_dir='persist_dir')\n\n"
code_snippet += "query_engine = vector_index.as_query_engine(response_mode=response_mode, verbose=True)\n"
return code_snippet
def main():
st.title("RAGArch: RAG Pipeline Tester and Code Generator")
st.markdown("""
- **Configure and Test RAG Pipelines with Custom Parameters**
- **Automatically Generate Plug-and-Play Implementation Code Based on Your Configuration**
""")
# Sidebar Intro
st.sidebar.markdown('## App Created By')
st.sidebar.markdown("""
Harshad Suryawanshi:
[Linkedin](https://www.linkedin.com/in/harshadsuryawanshi/), [Medium](https://harshadsuryawanshi.medium.com/), [X](https://twitter.com/HarshadSurya1c)
""")
st.sidebar.markdown('## Other Projects')
st.sidebar.markdown("""
- [C3 Voice Assistant - Making LLM/RAG Apps Accessible to Everyone](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-gpt3-activity-7149796976442740736-1lXj?utm_source=share&utm_medium=member_desktop)
- [NA2SQL - Extracting Insights from Databases using Natural Language](https://www.linkedin.com/posts/harshadsuryawanshi_ai-llamaindex-streamlit-activity-7141801596006440960-mCjT)
- [Pokemon Go! Inspired AInimal GO! - Multimodal RAG App](https://www.linkedin.com/posts/harshadsuryawanshi_llamaindex-ai-deeplearning-activity-7134632983495327744-M7yy)
- [Building My Own GPT4-V with PaLM and Kosmos](https://lnkd.in/dawgKZBP)
- [AI Equity Research Analyst](https://ai-eqty-rsrch-anlyst.streamlit.app/)
- [Recasting "The Office" Scene](https://blackmirroroffice.streamlit.app/)
- [Story Generator](https://appstorycombined-agaf9j4ceit.streamlit.app/)
""")
st.sidebar.markdown('## Disclaimer')
st.sidebar.markdown("""This application is for demonstration purposes only and may not cover all aspects of real-world data complexities. Please use it as a guide and not as a definitive source for decision-making.""")
# Upload file
file = upload_file()
# Select RAG components
llm, llm_choice = select_llm()
embed_model, embed_model_choice = select_embedding_model()
node_parser, node_parser_choice = select_node_parser()
# Process nodes only if a file has been uploaded
if file is not None:
if node_parser:
nodes = node_parser.get_nodes_from_documents(file)
st.write("First node: ")
st.code(f"{nodes[0].text}")
response_mode, response_mode_choice = select_response_synthesis_method()
vector_store, vector_store_choice = select_vector_store()
# Generate RAG Pipeline Button
if file is not None:
if st.button("Generate RAG Pipeline"):
with st.spinner():
query_engine = generate_rag_pipeline(file, llm, embed_model, node_parser, response_mode, vector_store)
st.session_state['query_engine'] = query_engine
st.session_state['pipeline_generated'] = True
st.success("RAG Pipeline Generated Successfully!")
elif file is None:
st.error('Please upload a file')
# After generating the RAG pipeline
if st.session_state.get('pipeline_generated', False):
query = st.text_input("Enter your query", key='query')
if st.button("Send"):
if 'query_engine' in st.session_state:
response = st.session_state['query_engine'].query(query)
st.markdown(response, unsafe_allow_html=True)
else:
st.error("Query engine not initialized. Please generate the RAG pipeline first.")
if file and st.button("Generate Code Snippet"):
code_snippet = generate_code_snippet(llm_choice, embed_model_choice, node_parser_choice, response_mode_choice, vector_store_choice)
st.code(code_snippet, language='python')
if __name__ == "__main__":
main() |