File size: 2,360 Bytes
4bce033 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import streamlit as st
import json
import pandas as pd
import plotly.express as px
import seaborn as sns
import matplotlib.pyplot as plt
# Function to load JSONL file into a DataFrame
def load_jsonl(file_path):
data = []
with open(file_path, 'r') as f:
for line in f:
data.append(json.loads(line))
return pd.DataFrame(data)
# Function to filter DataFrame by keyword
def filter_by_keyword(df, keyword):
return df[df.apply(lambda row: row.astype(str).str.contains(keyword).any(), axis=1)]
# Load the data
small_data = load_jsonl("usmle_16.2MB.jsonl")
large_data = load_jsonl("usmle_2.08MB.jsonl")
# Streamlit App
st.title("EDA with Plotly and Seaborn 📊")
# Dropdown for file selection
file_option = st.selectbox("Select file:", ["small_file.jsonl", "large_file.jsonl"])
st.write(f"You selected: {file_option}")
# Show filtered data grid
if file_option == "small_file.jsonl":
data = small_data
else:
data = large_data
filtered_data = filter_by_keyword(data, "Heart")
st.write("Filtered Dataset by 'Heart'")
st.dataframe(filtered_data)
# Plotly and Seaborn charts for EDA
if st.button("Generate Charts"):
st.subheader("Plotly Charts 📈")
# 1. Scatter Plot
fig = px.scatter(data, x=data.columns[0], y=data.columns[1])
st.plotly_chart(fig)
# 2. Line Plot
fig = px.line(data, x=data.columns[0], y=data.columns[1])
st.plotly_chart(fig)
# 3. Bar Plot
fig = px.bar(data, x=data.columns[0], y=data.columns[1])
st.plotly_chart(fig)
# 4. Histogram
fig = px.histogram(data, x=data.columns[0])
st.plotly_chart(fig)
# 5. Box Plot
fig = px.box(data, x=data.columns[0], y=data.columns[1])
st.plotly_chart(fig)
st.subheader("Seaborn Charts 📊")
# 6. Violin Plot
fig, ax = plt.subplots()
sns.violinplot(x=data.columns[0], y=data.columns[1], data=data)
st.pyplot(fig)
# 7. Swarm Plot
fig, ax = plt.subplots()
sns.swarmplot(x=data.columns[0], y=data.columns[1], data=data)
st.pyplot(fig)
# 8. Pair Plot
fig = sns.pairplot(data)
st.pyplot(fig)
# 9. Heatmap
fig, ax = plt.subplots()
sns.heatmap(data.corr(), annot=True)
st.pyplot(fig)
# 10. Regplot (Regression Plot)
fig, ax = plt.subplots()
sns.regplot(x=data.columns[0], y=data.columns[1], data=data)
st.pyplot(fig)
|