Model_Cards_Writing_Tool / 1_πŸ“_form.py
Margerie's picture
Version demo ready
b38979e
# from yaml import load
from persist import persist, load_widget_state
import streamlit as st
from io import StringIO
import tempfile
from pathlib import Path
import requests
from huggingface_hub import hf_hub_download, upload_file
import pandas as pd
from huggingface_hub import create_repo
import os
from datetime import date
from middleMan import parse_into_jinja_markdown as pj
import requests
@st.cache
def get_icd():
# Get ICD10 list
token_endpoint = 'https://icdaccessmanagement.who.int/connect/token'
client_id = '3bc9c811-7f2e-4dab-a2dc-940e47a38fef_a6108252-4503-4ff7-90ab-300fd27392aa'
client_secret = 'xPj7mleWf1Bilu9f7P10UQmBPvL5F6Wgd8/rJhO1T04='
scope = 'icdapi_access'
grant_type = 'client_credentials'
# set data to post
payload = {'client_id': client_id,
'client_secret': client_secret,
'scope': scope,
'grant_type': grant_type}
# make request
r = requests.post(token_endpoint, data=payload, verify=False).json()
token = r['access_token']
# access ICD API
uri = 'https://id.who.int/icd/release/10/2019/C00-C75'
# HTTP header fields to set
headers = {'Authorization': 'Bearer '+token,
'Accept': 'application/json',
'Accept-Language': 'en',
'API-Version': 'v2'}
# make request
r = requests.get(uri, headers=headers, verify=False)
print("icd",r.json())
icd_map =[]
for child in r.json()['child']:
r_child = requests.get(child, headers=headers,verify=False).json()
icd_map.append(r_child["code"]+" "+r_child["title"]["@value"])
return icd_map
@st.cache
def get_treatment_mod():
url = "https://clinicaltables.nlm.nih.gov/loinc_answers?loinc_num=21964-2"
r = requests.get(url).json()
treatment_mod = [treatment['DisplayText'] for treatment in r]
return treatment_mod
@st.cache
def get_cached_data():
languages_df = pd.read_html("https://hf.co/languages")[0]
languages_map = pd.Series(languages_df["Language"].values, index=languages_df["ISO code"]).to_dict()
license_df = pd.read_html("https://huggingface.co/docs/hub/repositories-licenses")[0]
license_map = pd.Series(
license_df["License identifier (to use in repo card)"].values, index=license_df.Fullname
).to_dict()
available_metrics = [x['id'] for x in requests.get('https://huggingface.co/api/metrics').json()]
r = requests.get('https://huggingface.co/api/models-tags-by-type')
tags_data = r.json()
libraries = [x['id'] for x in tags_data['library']]
tasks = [x['id'] for x in tags_data['pipeline_tag']]
icd_map = get_icd()
treatment_mod = get_treatment_mod()
return languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod
def card_upload(card_info,repo_id,token):
#commit_message=None,
repo_type = "model"
commit_description=None,
revision=None
create_pr=None
with tempfile.TemporaryDirectory() as tmpdir:
tmp_path = Path(tmpdir) / "README.md"
tmp_path.write_text(str(card_info))
url = upload_file(
path_or_fileobj=str(tmp_path),
path_in_repo="README.md",
repo_id=repo_id,
token=token,
repo_type=repo_type,
# identical_ok=True,
revision=revision
)
return url
def images_upload(images_list,repo_id,token):
repo_type = "model"
commit_description=None,
revision=None
create_pr=None
for img in images_list:
if img is not None:
with tempfile.TemporaryDirectory() as tmpdir:
tmp_path = Path(tmpdir) / "README.md"
tmp_path.write_text(str(img))
url = upload_file(
path_or_fileobj=str(tmp_path),
path_in_repo="README.md",
repo_id=repo_id,
token=token,
repo_type=repo_type,
# identical_ok=True,
revision=revision
)
return url
def validate(self, repo_type="model"):
"""Validates card against Hugging Face Hub's model card validation logic.
Using this function requires access to the internet, so it is only called
internally by `modelcards.ModelCard.push_to_hub`.
Args:
repo_type (`str`, *optional*):
The type of Hugging Face repo to push to. Defaults to None, which will use
use "model". Other options are "dataset" and "space".
"""
if repo_type is None:
repo_type = "model"
# TODO - compare against repo types constant in huggingface_hub if we move this object there.
if repo_type not in ["model", "space", "dataset"]:
raise RuntimeError(
"Provided repo_type '{repo_type}' should be one of ['model', 'space',"
" 'dataset']."
)
body = {
"repoType": repo_type,
"content": str(self),
}
headers = {"Accept": "text/plain"}
try:
r = requests.post(
"https://huggingface.co/api/validate-yaml", body, headers=headers
)
r.raise_for_status()
except requests.exceptions.HTTPError as exc:
if r.status_code == 400:
raise RuntimeError(r.text)
else:
raise exc
## Save uploaded [markdown] file to directory to be used by jinja parser function
def save_uploadedfile(uploadedfile):
with open(uploadedfile.name,"wb") as f:
f.write(uploadedfile.getbuffer())
st.success("Saved File:{} to temp_uploaded_filed_Dir".format(uploadedfile.name))
return uploadedfile.name
def main_page():
today=date.today()
if "model_name" not in st.session_state:
# Initialize session state.
st.session_state.update({
# Model Basic Information
"model_version": 0,
"icd10": [],
"treatment_modality": [],
"prescription_levels": [],
"additional_information": "",
"motivation": "",
"model_class":"",
"creation_date": today,
"architecture": "",
"model_developers": "",
"funded_by":"",
"shared_by":"",
"license": "",
"finetuned_from": "",
"research_paper": "",
"git_repo": "",
# Technical Specifications
"nb_parameters": 5,
"input_channels": [],
"loss_function": "",
"batch_size": 1,
"patch_dimension": [],
"architecture_filename":None,
"libraries":[],
"hardware": "",
"inference_time": 10,
"get_started_code": "",
# Training Details
"training_set_size":10,
"validation_set_size":10,
"age_fig_filename":"",
"sex_fig_filename":"",
"dataset_source": "",
"acquisition_from": today,
"acquisition_to": today,
"markdown_upload": ""
})
## getting cache for each warnings
languages_map, license_map, available_metrics, libraries, tasks, icd_map, treatment_mod = get_cached_data()
## form UI setting
st.header("Model basic information (Dose prediction)")
warning_placeholder = st.empty()
st.text_input("Model Name", key=persist("model_name"))
st.number_input("Version",key=persist("model_version"),step=0.1)
st.text("Intended use:")
left, right = st.columns([4,2])
left.multiselect("Treatment site ICD10",list(icd_map), help="Reference ICD10 WHO: https://icd.who.int/icdapi",key=persist("icd10"))
right.multiselect("Treatment modality", list(treatment_mod), help="Reference LOINC Modality Radiation treatment: https://loinc.org/21964-2", key=persist("treatment_modality"))
left, right = st.columns(2)
nlines = int(left.number_input("Number of prescription levels", 0, 20, 1))
# cols = st.columns(ncol)
for i in range(nlines):
right.number_input(f"Prescription [Gy] # {i}", key=i)
st.text_area("Additional information", placeholder = "Bilateral cases only", help="E.g. Bilateral cases only", key=persist('additional_information'))
st.text_area("Motivation for development", key=persist('motivation'))
st.text_area("Class", placeholder="RULE 11, FROM MDCG 2021-24", key=persist('model_class'))
st.date_input("Creation date", key=persist('creation_date'))
st.text_area("Type of architecture",value="UNet", key=persist('architecture'))
st.text("Developed by:")
left, middle, right = st.columns(3)
left.text_input("Name", key=persist('dev_name'))
middle.text_input("Institution", placeholder = "University/clinic/company", key=persist('dev_institution'))
right.text_input("Email", key=persist('dev_email'))
st.text_area("Funded by", key=persist('funded_by'))
st.text_area("Shared by", key=persist('shared_by'))
st.selectbox("License", [""] + list(license_map.values()), help="The license associated with this model.", key=persist("license"))
st.text_area("Fine tuned from model", key=persist('finetuned_from'))
st.text_area("Related Research Paper", help="Research paper related to this model.", key=persist("research_paper"))
st.text_input("Related GitHub Repository", help="Link to a GitHub repository used in the development of this model", key=persist("git_repo"))
# st.selectbox("Library Name", [""] + libraries, help="The name of the library this model came from (Ex. pytorch, timm, spacy, keras, etc.). This is usually automatically detected in model repos, so it is not required.", key=persist('library_name'))
# st.text_input("Parent Model (URL)", help="If this model has another model as its base, please provide the URL link to the parent model", key=persist("Parent_Model_name"))
# st.text_input("Datasets (comma separated)", help="The dataset(s) used to train this model. Use dataset id from https://hf.co/datasets.", key=persist("datasets"))
# st.multiselect("Metrics", available_metrics, help="Metrics used in the training/evaluation of this model. Use metric id from https://hf.co/metrics.", key=persist("metrics"))
# st.selectbox("Task", [""] + tasks, help="What task does this model aim to solve?", key=persist('task'))
# st.text_input("Tags (comma separated)", help="Additional tags to add which will be filterable on https://hf.co/models. (Ex. image-classification, vision, resnet)", key=persist("tags"))
# st.text_input("Author(s) (comma separated)", help="The authors who developed this model. If you trained this model, the author is you.", key=persist("the_authors"))
# s
# st.text_input("Carbon Emitted:", help="You can estimate carbon emissions using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700)", key=persist("Model_c02_emitted"))
# st.header("Technical specifications")
# st.header("Training data, methodology, and results")
# st.header("Evaluation data, methodology, and results / commissioning")
# st.header("Ethical use considerations")
# warnings setting
# languages=st.session_state.languages or None
license=st.session_state.license or None
task = None #st.session_state.task or None
markdown_upload = st.session_state.markdown_upload
#uploaded_model_card = st.session_state.uploaded_model
# Handle any warnings...
do_warn = False
warning_msg = "Warning: The following fields are required but have not been filled in: "
if not license:
warning_msg += "\n- License"
do_warn = True
if do_warn:
warning_placeholder.error(warning_msg)
with st.sidebar:
######################################################
### Uploading a model card from local drive
######################################################
st.markdown("## Upload Model Card")
st.markdown("#### Model Card must be in markdown (.md) format.")
# Read a single file
uploaded_file = st.file_uploader("Choose a file", type = ['md'], help = 'Please choose a markdown (.md) file type to upload')
if uploaded_file is not None:
name_of_uploaded_file = save_uploadedfile(uploaded_file)
st.session_state.markdown_upload = name_of_uploaded_file ## uploaded model card
# elif st.session_state.task =='fill-mask' or 'translation' or 'token-classification' or ' sentence-similarity' or 'summarization' or 'question-answering' or 'text2text-generation' or 'text-classification' or 'text-generation' or 'conversational':
# print("YO",st.session_state.task)
# st.session_state.markdown_upload = "language_model_template1.md" ## language model template
else:#if st.session_state.task:
st.session_state.markdown_upload = "current_card.md" ## default non language model template
print("st.session_state.markdown_upload",st.session_state.markdown_upload)
#########################################
### Uploading model card to HUB
#########################################
out_markdown =open( st.session_state.markdown_upload, "r+"
).read()
print_out_final = f"{out_markdown}"
st.markdown("## Export Loaded Model Card to Hub")
with st.form("Upload to πŸ€— Hub"):
st.markdown("Use a token with write access from [here](https://hf.co/settings/tokens)")
token = st.text_input("Token", type='password')
repo_id = st.text_input("Repo ID")
submit = st.form_submit_button('Upload to πŸ€— Hub', help='The current model card will be uploaded to a branch in the supplied repo ')
if submit:
if len(repo_id.split('/')) == 2:
repo_url = create_repo(repo_id, exist_ok=True, token=token)
new_url = card_upload(pj(),repo_id, token=token)
# images_upload([st.session_state['architecture_filename'], st.session_state["age_fig_filename"], st.session_state["sex_fig_filename"]],repo_id, token=token)
st.success(f"Pushed the card to the repo [here]({new_url})!") # note: was repo_url
else:
st.error("Repo ID invalid. It should be username/repo-name. For example: nateraw/food")
#########################################
### Download model card
#########################################
st.markdown("## Download current Model Card")
if st.session_state.model_name is None or st.session_state.model_name== ' ':
downloaded_file_name = 'current_model_card.md'
else:
downloaded_file_name = st.session_state.model_name+'_'+'model_card.md'
download_status = st.download_button(label = 'Download Model Card', data = pj(), file_name = downloaded_file_name, help = "The current model card will be downloaded as a markdown (.md) file")
if download_status == True:
st.success("Your current model card, successfully downloaded πŸ€—")
def page_switcher(page):
st.session_state.runpage = page
def main():
st.header("About Model Cards")
st.markdown(Path('about.md').read_text(), unsafe_allow_html=True)
btn = st.button('Create a Model Card πŸ“',on_click=page_switcher,args=(main_page,))
if btn:
st.experimental_rerun() # rerun is needed to clear the page
if __name__ == '__main__':
load_widget_state()
if 'runpage' not in st.session_state :
st.session_state.runpage = main
st.session_state.runpage()