xxyyy123's picture
Update app.py
8795d9e verified
import spaces
import os
import re
import time
import gradio as gr
import torch
from transformers import AutoModelForCausalLM
from transformers import TextIteratorStreamer
from threading import Thread
model_name = 'AIDC-AI/Ovis1.6-Gemma2-9B'
# load model
model = AutoModelForCausalLM.from_pretrained(model_name,
torch_dtype=torch.bfloat16,
multimodal_max_length=8192,
trust_remote_code=True).to(device='cuda')
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
streamer = TextIteratorStreamer(text_tokenizer, skip_prompt=True, skip_special_tokens=True)
image_placeholder = '<image>'
cur_dir = os.path.dirname(os.path.abspath(__file__))
def submit_chat(chatbot, text_input):
response = ''
chatbot.append((text_input, response))
return chatbot ,''
@spaces.GPU
def ovis_chat(chatbot, image_input):
# preprocess inputs
conversations = []
response = ""
text_input = chatbot[-1][0]
for query, response in chatbot[:-1]:
conversations.append({
"from": "human",
"value": query
})
conversations.append({
"from": "gpt",
"value": response
})
text_input = text_input.replace(image_placeholder, '')
conversations.append({
"from": "human",
"value": text_input
})
if image_input is not None:
conversations[0]["value"] = image_placeholder + '\n' + conversations[0]["value"]
prompt, input_ids, pixel_values = model.preprocess_inputs(conversations, [image_input])
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
if image_input is None:
pixel_values = [None]
else:
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
with torch.inference_mode():
gen_kwargs = dict(
max_new_tokens=512,
do_sample=False,
top_p=None,
top_k=None,
temperature=None,
repetition_penalty=None,
eos_token_id=model.generation_config.eos_token_id,
pad_token_id=text_tokenizer.pad_token_id,
use_cache=True
)
response = ""
thread = Thread(target=model.generate,
kwargs={"inputs": input_ids,
"pixel_values": pixel_values,
"attention_mask": attention_mask,
"streamer": streamer,
**gen_kwargs})
thread.start()
for new_text in streamer:
response += new_text
chatbot[-1][1] = response
yield chatbot
thread.join()
# debug
print('*'*60)
print('*'*60)
print('OVIS_CONV_START')
for i, (request, answer) in enumerate(chatbot[:-1], 1):
print(f'Q{i}:\n {request}')
print(f'A{i}:\n {answer}')
print('New_Q:\n', text_input)
print('New_A:\n', response)
print('OVIS_CONV_END')
def clear_chat():
return [], None, ""
with open(f"{cur_dir}/resource/logo.svg", "r", encoding="utf-8") as svg_file:
svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
<span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
<span style="display: inline-block; vertical-align: middle;">{model_name.split('/')[-1]}</span>
</p>
<center><font size=3><b>Ovis</b> has been open-sourced on <a href='https://huggingface.co/{model_name}'>😊 Huggingface</a> and <a href='https://github.com/AIDC-AI/Ovis'>🌟 GitHub</a>. If you find Ovis useful, a like❤️ or a star🌟 would be appreciated.</font></center>
"""
latex_delimiters_set = [{
"left": "\\(",
"right": "\\)",
"display": False
}, {
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
}, {
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
}, {
"left": "\\begin{alignat}",
"right": "\\end{alignat}",
"display": True
}, {
"left": "\\begin{gather}",
"right": "\\end{gather}",
"display": True
}, {
"left": "\\begin{CD}",
"right": "\\end{CD}",
"display": True
}, {
"left": "\\[",
"right": "\\]",
"display": True
}]
text_input = gr.Textbox(label="prompt", placeholder="Enter your text here...", lines=1, container=False)
with gr.Blocks(title=model_name.split('/')[-1], theme=gr.themes.Ocean()) as demo:
gr.HTML(html)
with gr.Row():
with gr.Column(scale=3):
image_input = gr.Image(label="image", height=350, type="pil")
gr.Examples(
examples=[
[f"{cur_dir}/examples/case0.png", "Find the area of the shaded region."],
[f"{cur_dir}/examples/case1.png", "explain this model to me."],
[f"{cur_dir}/examples/case2.png", "What is net profit margin as a percentage of total revenue?"],
],
inputs=[image_input, text_input]
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Ovis", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
text_input.render()
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(ovis_chat,[chatbot, image_input],chatbot)
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])
demo.launch(show_error=True)