File size: 10,249 Bytes
7258883
0dd8e7f
1c09022
30d5d12
fd51ff8
6234f75
0eb933f
eddabf1
a6350d7
0eb933f
72d2b05
5396a98
76edd3a
 
 
63bb324
 
 
 
 
 
 
 
 
 
 
 
9c4d5bc
 
 
 
 
63bb324
9c4d5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
8fcfb0e
 
a69ed79
0cd6b27
72d2b05
 
63bb324
0cd6b27
 
72d2b05
63bb324
0cd6b27
 
 
45d79dc
9c4d5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63bb324
 
9c4d5bc
 
 
 
 
 
 
 
 
 
 
 
63bb324
9c4d5bc
63bb324
9c4d5bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63bb324
9c4d5bc
63bb324
 
 
 
 
 
 
9c4d5bc
76edd3a
5c63e2e
353fcd6
5c63e2e
 
 
 
 
 
353fcd6
 
 
63bb324
353fcd6
c11fd82
63bb324
 
c11fd82
353fcd6
 
24e9955
 
 
 
353fcd6
9c4d5bc
 
 
 
 
 
 
 
 
 
 
63bb324
9c4d5bc
 
 
 
 
 
63bb324
9c4d5bc
 
63bb324
079d204
6df5542
 
37689e2
 
 
 
 
 
 
6df5542
37689e2
9c4d5bc
824d4bb
9c4d5bc
 
63bb324
 
 
 
 
9c4d5bc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import os, glob
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models
from enum import Enum

OWNER = "AIEnergyScore"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)

task_mappings = {
    'automatic speech recognition': 'automatic-speech-recognition',
    'Object Detection': 'object-detection',
    'Text Classification': 'text-classification',
    'Image to Text': 'image-to-text',
    'Question Answering': 'question-answering',
    'Text Generation': 'text-generation',
    'Image Classification': 'image-classification',
    'Sentence Similarity': 'sentence-similarity',
    'Image Generation': 'image-generation',
    'Summarization': 'summarization'
}

@dataclass
class ModelDetails:
    name: str
    display_name: str = ""
    symbol: str = ""  # emoji

def start_compute_space():
    API.restart_space(COMPUTE_SPACE)
    gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!")

def get_model_size(model_info: ModelInfo):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
    return model_size

def add_docker_eval(zip_file):
    new_fid_list = zip_file.split("/")
    new_fid = new_fid_list[-1]
    if new_fid.endswith('.zip'):
        API.upload_file(
            path_or_fileobj=zip_file,
            repo_id="AIEnergyScore/tested_proprietary_models",
            path_in_repo='submitted_models/' + new_fid,
            repo_type="dataset",
            commit_message="Adding logs via submission Space.",
            token=TOKEN
        )
        gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.')
    else:
        gr.Info('You can only upload .zip files here!')

def add_new_eval(repo_id: str, task: str):
    model_owner = repo_id.split("/")[0]
    model_name = repo_id.split("/")[1]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
    requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
    requests_dset = requests.to_pandas()
    model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
    task_models = list(API.list_models(filter=task_mappings[task]))
    task_model_names = [m.id for m in task_models]
    if repo_id in model_list:
        gr.Info('This model has already been run!')
    elif repo_id not in task_model_names:
        gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination")
    else:
        # Is the model info correctly filled?
        try:
            model_info = API.model_info(repo_id=repo_id)
            model_size = get_model_size(model_info=model_info)
            likes = model_info.likes
        except Exception:
            gr.Info("Could not find information for model %s" % (model_name))
            model_size = None
            likes = None

        gr.Info("Adding request")

        request_dict = {
            "model": repo_id,
            "status": "PENDING",
            "submitted_time": pd.to_datetime(current_time),
            "task": task_mappings[task],
            "likes": likes,
            "params": model_size,
            "leaderboard_version": "v0",
        }

        print("Writing out request file to dataset")
        df_request_dict = pd.DataFrame([request_dict])
        print(df_request_dict)
        df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
        updated_dset = Dataset.from_pandas(df_final)
        updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN)

        gr.Info("Starting compute space at %s " % COMPUTE_SPACE)
        return start_compute_space()

def print_existing_models():
    requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
    requests_dset = requests.to_pandas()
    model_df = requests_dset[['model', 'status']]
    model_df = model_df[model_df['status'] == 'COMPLETED']
    return model_df

def highlight_cols(x):
    df = x.copy()
    df[df['status'] == 'COMPLETED'] = 'color: green'
    df[df['status'] == 'PENDING'] = 'color: orange'
    df[df['status'] == 'FAILED'] = 'color: red'
    return df

# Applying the style function
existing_models = print_existing_models()
formatted_df = existing_models.style.apply(highlight_cols, axis=None)

def get_leaderboard_models():
    path = r'leaderboard_v0_data/energy'
    filenames = glob.glob(path + "/*.csv")
    data = []
    for filename in filenames:
        data.append(pd.read_csv(filename))
    leaderboard_data = pd.concat(data, ignore_index=True)
    return leaderboard_data[['model', 'task']]

# A placeholder for get_zip_data_link() -- replace with your actual implementation if available.
def get_zip_data_link():
    return (
        '<a href="https://example.com/download.zip" '
        'style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em; '
        'color: black; font-family: \'Inter\', sans-serif;">Download Logs</a>'
    )

with gr.Blocks() as demo:
    # --- Header Links (at the very top, evenly spaced) ---
    gr.HTML("""
    <div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
        <a href="https://huggingface.co/spaces/AIEnergyScore/leaderboard" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Leaderboard</a>
        <a href="https://huggingface.co/spaces/AIEnergyScore/Label" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Label Generator</a>
        <a href="https://huggingface.github.io/AIEnergyScore/#faq" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">FAQ</a>
        <a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Documentation</a>
        <a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Community</a>
    </div>
    """)
    
    # --- Logo (centered) ---
    gr.HTML("""
    <div style="margin-top: 0px;">
        <img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png" 
             alt="Logo" 
             style="display: block; margin: 0 auto; max-width: 300px; height: auto;">
    </div>
    """)
    gr.Markdown('<div style="text-align: center;"><h2>Submission Portal</h2></div>')    
    gr.Markdown('<div style="text-align: center;">If you want us to evaluate a model hosted on the 🤗 Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click <strong>Run Analysis</strong> to launch the benchmarking process.</div>')    
    gr.Markdown('<div style="text-align: center;">If you\'ve used the <a href="https://github.com/huggingface/AIEnergyScore/">Docker file</a> to run your own evaluation, please submit the resulting log files at the bottom of the page.</div>')    
    gr.Markdown('<div style="text-align: center;">The <a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard">Project Leaderboard</a> will be updated on a biannual basis (last updated in February 2025).</div>')    
    
    with gr.Row():
        with gr.Column():
            task = gr.Dropdown(
                choices=list(task_mappings.keys()),
                label="Choose a benchmark task",
                value='Text Generation',
                multiselect=False,
                interactive=True,
            )
        with gr.Column():
            model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
    
    with gr.Row():
        with gr.Column():
            submit_button = gr.Button("Submit for Analysis")
            submission_result = gr.Markdown()
            submit_button.click(
                fn=add_new_eval,
                inputs=[model_name_textbox, task],
                outputs=submission_result,
            )
    
    with gr.Row():
        with gr.Column():
            with gr.Accordion("Submit log files from a Docker run:", open=False):
                gr.Markdown("""
                **⚠️ Warning: By uploading the zip file, you confirm that you have read and agree to the following terms:**
            
                - **Public Data Sharing:** You consent to the public sharing of the energy performance data derived from your submission. No additional information related to this model, including proprietary configurations, will be disclosed.
                - **Data Integrity:** You certify that the log files submitted are accurate, unaltered, and generated directly from testing your model as per the specified benchmarking procedures.
                - **Model Representation:** You affirm that the model tested and submitted is representative of the production-level version, including its level of quantization and any other relevant characteristics impacting energy efficiency and performance.
                """)
                file_output = gr.File(visible=False)
                u = gr.UploadButton("Upload a zip file with logs", file_count="single", interactive=True)
                u.upload(add_docker_eval, u, file_output)

    with gr.Row():
        with gr.Column():
            with gr.Accordion("Models that are in the latest leaderboard version:", open=False, visible=False):
                gr.Dataframe(get_leaderboard_models())
            with gr.Accordion("Models that have been benchmarked recently:", open=False, visible=False):
                gr.Dataframe(formatted_df)

demo.launch()