Spaces:
Running
Running
File size: 10,249 Bytes
7258883 0dd8e7f 1c09022 30d5d12 fd51ff8 6234f75 0eb933f eddabf1 a6350d7 0eb933f 72d2b05 5396a98 76edd3a 63bb324 9c4d5bc 63bb324 9c4d5bc 8fcfb0e a69ed79 0cd6b27 72d2b05 63bb324 0cd6b27 72d2b05 63bb324 0cd6b27 45d79dc 9c4d5bc 63bb324 9c4d5bc 63bb324 9c4d5bc 63bb324 9c4d5bc 63bb324 9c4d5bc 63bb324 9c4d5bc 76edd3a 5c63e2e 353fcd6 5c63e2e 353fcd6 63bb324 353fcd6 c11fd82 63bb324 c11fd82 353fcd6 24e9955 353fcd6 9c4d5bc 63bb324 9c4d5bc 63bb324 9c4d5bc 63bb324 079d204 6df5542 37689e2 6df5542 37689e2 9c4d5bc 824d4bb 9c4d5bc 63bb324 9c4d5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os, glob
import json
from datetime import datetime, timezone
from dataclasses import dataclass
from datasets import load_dataset, Dataset
import pandas as pd
import gradio as gr
from huggingface_hub import HfApi, snapshot_download, ModelInfo, list_models
from enum import Enum
OWNER = "AIEnergyScore"
COMPUTE_SPACE = f"{OWNER}/launch-computation-example"
TOKEN = os.environ.get("DEBUG")
API = HfApi(token=TOKEN)
task_mappings = {
'automatic speech recognition': 'automatic-speech-recognition',
'Object Detection': 'object-detection',
'Text Classification': 'text-classification',
'Image to Text': 'image-to-text',
'Question Answering': 'question-answering',
'Text Generation': 'text-generation',
'Image Classification': 'image-classification',
'Sentence Similarity': 'sentence-similarity',
'Image Generation': 'image-generation',
'Summarization': 'summarization'
}
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
def start_compute_space():
API.restart_space(COMPUTE_SPACE)
gr.Info(f"Okay! {COMPUTE_SPACE} should be running now!")
def get_model_size(model_info: ModelInfo):
"""Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
try:
model_size = round(model_info.safetensors["total"] / 1e9, 3)
except (AttributeError, TypeError):
return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
return model_size
def add_docker_eval(zip_file):
new_fid_list = zip_file.split("/")
new_fid = new_fid_list[-1]
if new_fid.endswith('.zip'):
API.upload_file(
path_or_fileobj=zip_file,
repo_id="AIEnergyScore/tested_proprietary_models",
path_in_repo='submitted_models/' + new_fid,
repo_type="dataset",
commit_message="Adding logs via submission Space.",
token=TOKEN
)
gr.Info('Uploaded logs to dataset! We will validate their validity and add them to the next version of the leaderboard.')
else:
gr.Info('You can only upload .zip files here!')
def add_new_eval(repo_id: str, task: str):
model_owner = repo_id.split("/")[0]
model_name = repo_id.split("/")[1]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_list = requests_dset[requests_dset['status'] == 'COMPLETED']['model'].tolist()
task_models = list(API.list_models(filter=task_mappings[task]))
task_model_names = [m.id for m in task_models]
if repo_id in model_list:
gr.Info('This model has already been run!')
elif repo_id not in task_model_names:
gr.Info("This model isn't compatible with the chosen task! Pick a different model-task combination")
else:
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=repo_id)
model_size = get_model_size(model_info=model_info)
likes = model_info.likes
except Exception:
gr.Info("Could not find information for model %s" % (model_name))
model_size = None
likes = None
gr.Info("Adding request")
request_dict = {
"model": repo_id,
"status": "PENDING",
"submitted_time": pd.to_datetime(current_time),
"task": task_mappings[task],
"likes": likes,
"params": model_size,
"leaderboard_version": "v0",
}
print("Writing out request file to dataset")
df_request_dict = pd.DataFrame([request_dict])
print(df_request_dict)
df_final = pd.concat([requests_dset, df_request_dict], ignore_index=True)
updated_dset = Dataset.from_pandas(df_final)
updated_dset.push_to_hub("AIEnergyScore/requests_debug", split="test", token=TOKEN)
gr.Info("Starting compute space at %s " % COMPUTE_SPACE)
return start_compute_space()
def print_existing_models():
requests = load_dataset("AIEnergyScore/requests_debug", split="test", token=TOKEN)
requests_dset = requests.to_pandas()
model_df = requests_dset[['model', 'status']]
model_df = model_df[model_df['status'] == 'COMPLETED']
return model_df
def highlight_cols(x):
df = x.copy()
df[df['status'] == 'COMPLETED'] = 'color: green'
df[df['status'] == 'PENDING'] = 'color: orange'
df[df['status'] == 'FAILED'] = 'color: red'
return df
# Applying the style function
existing_models = print_existing_models()
formatted_df = existing_models.style.apply(highlight_cols, axis=None)
def get_leaderboard_models():
path = r'leaderboard_v0_data/energy'
filenames = glob.glob(path + "/*.csv")
data = []
for filename in filenames:
data.append(pd.read_csv(filename))
leaderboard_data = pd.concat(data, ignore_index=True)
return leaderboard_data[['model', 'task']]
# A placeholder for get_zip_data_link() -- replace with your actual implementation if available.
def get_zip_data_link():
return (
'<a href="https://example.com/download.zip" '
'style="margin: 0 10px; text-decoration: none; font-weight: bold; font-size: 1.1em; '
'color: black; font-family: \'Inter\', sans-serif;">Download Logs</a>'
)
with gr.Blocks() as demo:
# --- Header Links (at the very top, evenly spaced) ---
gr.HTML("""
<div style="display: flex; justify-content: space-evenly; align-items: center; margin-bottom: 20px;">
<a href="https://huggingface.co/spaces/AIEnergyScore/leaderboard" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Leaderboard</a>
<a href="https://huggingface.co/spaces/AIEnergyScore/Label" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Label Generator</a>
<a href="https://huggingface.github.io/AIEnergyScore/#faq" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">FAQ</a>
<a href="https://huggingface.github.io/AIEnergyScore/#documentation" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Documentation</a>
<a href="https://huggingface.co/spaces/AIEnergyScore/README/discussions" style="text-decoration: none; font-weight: bold; font-size: 1.1em; color: black; font-family: 'Inter', sans-serif;">Community</a>
</div>
""")
# --- Logo (centered) ---
gr.HTML("""
<div style="margin-top: 0px;">
<img src="https://huggingface.co/spaces/AIEnergyScore/Leaderboard/resolve/main/logo.png"
alt="Logo"
style="display: block; margin: 0 auto; max-width: 300px; height: auto;">
</div>
""")
gr.Markdown('<div style="text-align: center;"><h2>Submission Portal</h2></div>')
gr.Markdown('<div style="text-align: center;">If you want us to evaluate a model hosted on the 🤗 Hub, enter the model ID and choose the corresponding task from the dropdown list below, then click <strong>Run Analysis</strong> to launch the benchmarking process.</div>')
gr.Markdown('<div style="text-align: center;">If you\'ve used the <a href="https://github.com/huggingface/AIEnergyScore/">Docker file</a> to run your own evaluation, please submit the resulting log files at the bottom of the page.</div>')
gr.Markdown('<div style="text-align: center;">The <a href="https://huggingface.co/spaces/AIEnergyScore/Leaderboard">Project Leaderboard</a> will be updated on a biannual basis (last updated in February 2025).</div>')
with gr.Row():
with gr.Column():
task = gr.Dropdown(
choices=list(task_mappings.keys()),
label="Choose a benchmark task",
value='Text Generation',
multiselect=False,
interactive=True,
)
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name (user_name/model_name)")
with gr.Row():
with gr.Column():
submit_button = gr.Button("Submit for Analysis")
submission_result = gr.Markdown()
submit_button.click(
fn=add_new_eval,
inputs=[model_name_textbox, task],
outputs=submission_result,
)
with gr.Row():
with gr.Column():
with gr.Accordion("Submit log files from a Docker run:", open=False):
gr.Markdown("""
**⚠️ Warning: By uploading the zip file, you confirm that you have read and agree to the following terms:**
- **Public Data Sharing:** You consent to the public sharing of the energy performance data derived from your submission. No additional information related to this model, including proprietary configurations, will be disclosed.
- **Data Integrity:** You certify that the log files submitted are accurate, unaltered, and generated directly from testing your model as per the specified benchmarking procedures.
- **Model Representation:** You affirm that the model tested and submitted is representative of the production-level version, including its level of quantization and any other relevant characteristics impacting energy efficiency and performance.
""")
file_output = gr.File(visible=False)
u = gr.UploadButton("Upload a zip file with logs", file_count="single", interactive=True)
u.upload(add_docker_eval, u, file_output)
with gr.Row():
with gr.Column():
with gr.Accordion("Models that are in the latest leaderboard version:", open=False, visible=False):
gr.Dataframe(get_leaderboard_models())
with gr.Accordion("Models that have been benchmarked recently:", open=False, visible=False):
gr.Dataframe(formatted_df)
demo.launch() |