Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,817 Bytes
a84a65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
"""
与autoencoder.py的区别在于,autoencoder.py是(B,1,80,T) ->(B,C,80/8,T/8),现在vae要变成(B,80,T) -> (B,80/downsample_c,T/downsample_t)
"""
import os
import torch
import torch.nn as nn
import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
from packaging import version
import numpy as np
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from torch.optim.lr_scheduler import LambdaLR
from ldm.util import instantiate_from_config
class AutoencoderKL(pl.LightningModule):
def __init__(self,
embed_dim,
ddconfig,
lossconfig,
ckpt_path=None,
ignore_keys=[],
image_key="image",
monitor=None,
):
super().__init__()
self.image_key = image_key
self.encoder = Encoder1D(**ddconfig)
self.decoder = Decoder1D(**ddconfig)
self.loss = instantiate_from_config(lossconfig)
assert ddconfig["double_z"]
self.quant_conv = torch.nn.Conv1d(2*ddconfig["z_channels"], 2*embed_dim, 1)
self.post_quant_conv = torch.nn.Conv1d(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if monitor is not None:
self.monitor = monitor
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
self.load_state_dict(sd, strict=False)
print(f"AutoencoderKL Restored from {path} Done")
def encode(self, x):
h = self.encoder(x)
moments = self.quant_conv(h)
posterior = DiagonalGaussianDistribution(moments)
return posterior
def decode(self, z):
z = self.post_quant_conv(z)
dec = self.decoder(z)
return dec
def forward(self, input, sample_posterior=True):
posterior = self.encode(input)
if sample_posterior:
z = posterior.sample()
else:
z = posterior.mode()
dec = self.decode(z)
return dec, posterior
def get_input(self, batch, k):
x = batch[k]
assert len(x.shape) == 3
x = x.to(memory_format=torch.contiguous_format).float()
return x
def training_step(self, batch, batch_idx, optimizer_idx):
inputs = self.get_input(batch, self.image_key)
# print(inputs.shape)
reconstructions, posterior = self(inputs)
if optimizer_idx == 0:
# train encoder+decoder+logvar
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
return aeloss
if optimizer_idx == 1:
# train the discriminator
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
return discloss
def validation_step(self, batch, batch_idx):
inputs = self.get_input(batch, self.image_key)
reconstructions, posterior = self(inputs)
aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
last_layer=self.get_last_layer(), split="val")
discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
last_layer=self.get_last_layer(), split="val")
self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def test_step(self, batch, batch_idx):
inputs = self.get_input(batch, self.image_key)# inputs shape:(b,mel_len,T)
reconstructions, posterior = self(inputs)# reconstructions:(b,mel_len,T)
mse_loss = torch.nn.functional.mse_loss(reconstructions,inputs)
self.log('test/mse_loss',mse_loss)
test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
if batch_idx == 0:
print(f"save_path is: {savedir}")
if not os.path.exists(savedir):
os.makedirs(savedir)
print(f"save_path is: {savedir}")
file_names = batch['f_name']
# print(f"reconstructions.shape:{reconstructions.shape}",file_names)
# reconstructions = (reconstructions + 1)/2 # to mel scale
reconstructions = reconstructions.cpu().numpy() # squuze channel dim
for b in range(reconstructions.shape[0]):
vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
save_img_path = os.path.join(savedir, f'{v_n}.npy') # f'{v_n}_sample_{num}.npy' f'{v_n}.npy'
np.save(save_img_path,reconstructions[b])
return None
def configure_optimizers(self):
lr = self.learning_rate
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
list(self.decoder.parameters())+
list(self.quant_conv.parameters())+
list(self.post_quant_conv.parameters()),
lr=lr, betas=(0.5, 0.9))
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
lr=lr, betas=(0.5, 0.9))
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
@torch.no_grad()
def log_images(self, batch, only_inputs=False, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if not only_inputs:
xrec, posterior = self(x)
log["samples"] = self.decode(torch.randn_like(posterior.sample())).unsqueeze(1) # (b,1,H,W)
log["reconstructions"] = xrec.unsqueeze(1)
log["inputs"] = x.unsqueeze(1)
return log
def Normalize(in_channels, num_groups=32):
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
def nonlinearity(x):
# swish
return x*torch.sigmoid(x)
class ResnetBlock1D(nn.Module):
def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
dropout, temb_channels=512,kernel_size = 3):
super().__init__()
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels)
self.conv1 = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2)
if temb_channels > 0:
self.temb_proj = torch.nn.Linear(temb_channels,
out_channels)
self.norm2 = Normalize(out_channels)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = torch.nn.Conv1d(out_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2)
else:
self.nin_shortcut = torch.nn.Conv1d(in_channels,
out_channels,
kernel_size=1,
stride=1,
padding=0)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = nonlinearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]
h = self.norm2(h)
h = nonlinearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x+h
class AttnBlock1D(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels)
self.q = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1)
self.k = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1)
self.v = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1)
self.proj_out = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=1)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b,t,c = q.shape
q = q.permute(0,2,1) # b,t,c
w_ = torch.bmm(q,k) # b,t,t w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
# if still 2d attn (q:b,hw,c ,k:b,c,hw -> w_:b,hw,hw)
w_ = w_ * (int(t)**(-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
w_ = w_.permute(0,2,1) # b,t,t (first t of k, second of q)
h_ = torch.bmm(v,w_) # b,c,t (t of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = self.proj_out(h_)
return x+h_
class Upsample1D(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=3,
stride=1,
padding=1)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") # support 3D tensor(B,C,T)
if self.with_conv:
x = self.conv(x)
return x
class Downsample1D(nn.Module):
def __init__(self, in_channels, with_conv):
super().__init__()
self.with_conv = with_conv
if self.with_conv:
# no asymmetric padding in torch conv, must do it ourselves
self.conv = torch.nn.Conv1d(in_channels,
in_channels,
kernel_size=3,
stride=2,
padding=0)
def forward(self, x):
if self.with_conv:
pad = (0,1)
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2)
return x
class Encoder1D(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
attn_layers = [],down_layers = [], dropout=0.0, resamp_with_conv=True, in_channels,
z_channels, double_z=True,kernel_size=3, **ignore_kwargs):
""" out_ch is only used in decoder,not used here
"""
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_layers = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
print(f"downsample rates is {2**len(down_layers)}")
self.down_layers = down_layers
self.attn_layers = attn_layers
self.conv_in = torch.nn.Conv1d(in_channels,
self.ch,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2)
in_ch_mult = (1,)+tuple(ch_mult)
self.in_ch_mult = in_ch_mult
# downsampling
self.down = nn.ModuleList()
for i_level in range(self.num_layers):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch*in_ch_mult[i_level]
block_out = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResnetBlock1D(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
kernel_size=kernel_size))
block_in = block_out
if i_level in attn_layers:
# print(f"add attn in layer:{i_level}")
attn.append(AttnBlock1D(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level in down_layers:
down.downsample = Downsample1D(block_in, resamp_with_conv)
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock1D(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
kernel_size=kernel_size)
self.mid.attn_1 = AttnBlock1D(block_in)
self.mid.block_2 = ResnetBlock1D(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
kernel_size=kernel_size)
# end
self.norm_out = Normalize(block_in)# GroupNorm
self.conv_out = torch.nn.Conv1d(block_in,
2*z_channels if double_z else z_channels,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2)
def forward(self, x):
# timestep embedding
temb = None
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_layers):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level in self.down_layers:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder1D(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
attn_layers = [],down_layers = [], dropout=0.0,kernel_size=3, resamp_with_conv=True, in_channels,
z_channels, give_pre_end=False, tanh_out=False, **ignorekwargs):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_layers = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
self.down_layers = [i+1 for i in down_layers] # each downlayer add one
print(f"upsample rates is {2**len(down_layers)}")
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,)+tuple(ch_mult)
block_in = ch*ch_mult[self.num_layers-1]
# z to block_in
self.conv_in = torch.nn.Conv1d(z_channels,
block_in,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock1D(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
self.mid.attn_1 = AttnBlock1D(block_in)
self.mid.block_2 = ResnetBlock1D(in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_layers)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks+1):
block.append(ResnetBlock1D(in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout))
block_in = block_out
if i_level in attn_layers:
# print(f"add attn in layer:{i_level}")
attn.append(AttnBlock1D(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level in self.down_layers:
up.upsample = Upsample1D(block_in, resamp_with_conv)
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv1d(block_in,
out_ch,
kernel_size=kernel_size,
stride=1,
padding=kernel_size//2)
def forward(self, z):
#assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_layers)):
for i_block in range(self.num_res_blocks+1):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level in self.down_layers:
h = self.up[i_level].upsample(h)
# end
if self.give_pre_end:
return h
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
if self.tanh_out:
h = torch.tanh(h)
return h |