File size: 20,817 Bytes
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
"""
与autoencoder.py的区别在于,autoencoder.py是(B,1,80,T) ->(B,C,80/8,T/8),现在vae要变成(B,80,T) -> (B,80/downsample_c,T/downsample_t)
"""

import os
import torch
import torch.nn as nn
import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
from packaging import version
import numpy as np
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
from torch.optim.lr_scheduler import LambdaLR
from ldm.util import instantiate_from_config


class AutoencoderKL(pl.LightningModule):
    def __init__(self,
                 embed_dim,
                 ddconfig,
                 lossconfig,
                 ckpt_path=None,
                 ignore_keys=[],
                 image_key="image",
                 monitor=None,
                 ):
        super().__init__()
        self.image_key = image_key
        self.encoder = Encoder1D(**ddconfig)
        self.decoder = Decoder1D(**ddconfig)
        self.loss = instantiate_from_config(lossconfig)
        assert ddconfig["double_z"]
        self.quant_conv = torch.nn.Conv1d(2*ddconfig["z_channels"], 2*embed_dim, 1)
        self.post_quant_conv = torch.nn.Conv1d(embed_dim, ddconfig["z_channels"], 1)
        self.embed_dim = embed_dim
        if monitor is not None:
            self.monitor = monitor
        if ckpt_path is not None:
            self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)

    def init_from_ckpt(self, path, ignore_keys=list()):
        sd = torch.load(path, map_location="cpu")["state_dict"]
        keys = list(sd.keys())
        for k in keys:
            for ik in ignore_keys:
                if k.startswith(ik):
                    print("Deleting key {} from state_dict.".format(k))
                    del sd[k]
        self.load_state_dict(sd, strict=False)
        print(f"AutoencoderKL Restored from {path} Done")

    def encode(self, x):
        h = self.encoder(x)
        moments = self.quant_conv(h)
        posterior = DiagonalGaussianDistribution(moments)
        return posterior

    def decode(self, z):
        z = self.post_quant_conv(z)
        dec = self.decoder(z)
        return dec

    def forward(self, input, sample_posterior=True):
        posterior = self.encode(input)
        if sample_posterior:
            z = posterior.sample()
        else:
            z = posterior.mode()
        dec = self.decode(z)
        return dec, posterior

    def get_input(self, batch, k):
        x = batch[k]
        assert len(x.shape) == 3
        x = x.to(memory_format=torch.contiguous_format).float()
        return x

    def training_step(self, batch, batch_idx, optimizer_idx):
        inputs = self.get_input(batch, self.image_key)
        # print(inputs.shape)
        reconstructions, posterior = self(inputs)

        if optimizer_idx == 0:
            # train encoder+decoder+logvar
            aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
                                            last_layer=self.get_last_layer(), split="train")
            self.log("aeloss", aeloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=False)
            return aeloss

        if optimizer_idx == 1:
            # train the discriminator
            discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, optimizer_idx, self.global_step,
                                                last_layer=self.get_last_layer(), split="train")

            self.log("discloss", discloss, prog_bar=True, logger=True, on_step=True, on_epoch=True)
            self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=False)
            return discloss

    def validation_step(self, batch, batch_idx):
        inputs = self.get_input(batch, self.image_key)
        reconstructions, posterior = self(inputs)
        aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step,
                                        last_layer=self.get_last_layer(), split="val")

        discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step,
                                            last_layer=self.get_last_layer(), split="val")

        self.log("val/rec_loss", log_dict_ae["val/rec_loss"])
        self.log_dict(log_dict_ae)
        self.log_dict(log_dict_disc)
        return self.log_dict

    def test_step(self, batch, batch_idx):
        inputs = self.get_input(batch, self.image_key)# inputs shape:(b,mel_len,T)
        reconstructions, posterior = self(inputs)# reconstructions:(b,mel_len,T)
        mse_loss = torch.nn.functional.mse_loss(reconstructions,inputs)
        self.log('test/mse_loss',mse_loss)
          
        test_ckpt_path = os.path.basename(self.trainer.tested_ckpt_path)
        savedir = os.path.join(self.trainer.log_dir,f'output_imgs_{test_ckpt_path}','fake_class')
        if batch_idx == 0:
            print(f"save_path is: {savedir}")
        if not os.path.exists(savedir):
            os.makedirs(savedir)
            print(f"save_path is: {savedir}")

        file_names = batch['f_name']
        # print(f"reconstructions.shape:{reconstructions.shape}",file_names)
        # reconstructions = (reconstructions + 1)/2 # to mel scale  
        reconstructions = reconstructions.cpu().numpy() # squuze channel dim
        for b in range(reconstructions.shape[0]):
            vname_num_split_index = file_names[b].rfind('_')# file_names[b]:video_name+'_'+num
            v_n,num = file_names[b][:vname_num_split_index],file_names[b][vname_num_split_index+1:]
            save_img_path = os.path.join(savedir, f'{v_n}.npy') # f'{v_n}_sample_{num}.npy'   f'{v_n}.npy'
            np.save(save_img_path,reconstructions[b])
        
        return None
        
    def configure_optimizers(self):
        lr = self.learning_rate
        opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
                                  list(self.decoder.parameters())+
                                  list(self.quant_conv.parameters())+
                                  list(self.post_quant_conv.parameters()),
                                  lr=lr, betas=(0.5, 0.9))
        opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
                                    lr=lr, betas=(0.5, 0.9))
        return [opt_ae, opt_disc], []

    def get_last_layer(self):
        return self.decoder.conv_out.weight

    @torch.no_grad()
    def log_images(self, batch, only_inputs=False, **kwargs):
        log = dict()
        x = self.get_input(batch, self.image_key)
        x = x.to(self.device)
        
        if not only_inputs:
            xrec, posterior = self(x)
            log["samples"] = self.decode(torch.randn_like(posterior.sample())).unsqueeze(1) # (b,1,H,W)
            log["reconstructions"] = xrec.unsqueeze(1)
        log["inputs"] = x.unsqueeze(1)
        return log


def Normalize(in_channels, num_groups=32):
    return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)

def nonlinearity(x):
    # swish
    return x*torch.sigmoid(x)

class ResnetBlock1D(nn.Module):
    def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False,
                 dropout, temb_channels=512,kernel_size = 3):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv1d(in_channels,
                                     out_channels,
                                     kernel_size=kernel_size,
                                     stride=1,
                                     padding=kernel_size//2)
        if temb_channels > 0:
            self.temb_proj = torch.nn.Linear(temb_channels,
                                             out_channels)
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv1d(out_channels,
                                     out_channels,
                                     kernel_size=kernel_size,
                                     stride=1,
                                     padding=kernel_size//2)
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv1d(in_channels,
                                                     out_channels,
                                                     kernel_size=kernel_size,
                                                     stride=1,
                                                     padding=kernel_size//2)
            else:
                self.nin_shortcut = torch.nn.Conv1d(in_channels,
                                                    out_channels,
                                                    kernel_size=1,
                                                    stride=1,
                                                    padding=0)

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        if temb is not None:
            h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x+h

class AttnBlock1D(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv1d(in_channels,
                                 in_channels,
                                 kernel_size=1)
        self.k = torch.nn.Conv1d(in_channels,
                                 in_channels,
                                 kernel_size=1)
        self.v = torch.nn.Conv1d(in_channels,
                                 in_channels,
                                 kernel_size=1)
        self.proj_out = torch.nn.Conv1d(in_channels,
                                        in_channels,
                                        kernel_size=1)


    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b,t,c = q.shape
        q = q.permute(0,2,1)   # b,t,c   
        w_ = torch.bmm(q,k)     # b,t,t   w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        # if still 2d attn (q:b,hw,c ,k:b,c,hw -> w_:b,hw,hw)
        w_ = w_ * (int(t)**(-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        w_ = w_.permute(0,2,1)   # b,t,t (first t of k, second of q)
        h_ = torch.bmm(v,w_)     # b,c,t (t of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]

        h_ = self.proj_out(h_)

        return x+h_

class Upsample1D(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = torch.nn.Conv1d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)

    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") # support 3D tensor(B,C,T)
        if self.with_conv:
            x = self.conv(x)
        return x


class Downsample1D(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv1d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)

    def forward(self, x):
        if self.with_conv:
            pad = (0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool1d(x, kernel_size=2, stride=2)
        return x

class Encoder1D(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_layers = [],down_layers = [], dropout=0.0, resamp_with_conv=True, in_channels,
                 z_channels, double_z=True,kernel_size=3, **ignore_kwargs):
        """ out_ch is only used in decoder,not used here
        """
        super().__init__()
        self.ch = ch
        self.temb_ch = 0
        self.num_layers = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.in_channels = in_channels
        print(f"downsample rates is {2**len(down_layers)}")
        self.down_layers = down_layers
        self.attn_layers = attn_layers
        self.conv_in = torch.nn.Conv1d(in_channels,
                                       self.ch,
                                       kernel_size=kernel_size,
                                       stride=1,
                                       padding=kernel_size//2)

        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        # downsampling
        self.down = nn.ModuleList()
        for i_level in range(self.num_layers):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock1D(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout,
                                         kernel_size=kernel_size))
                block_in = block_out
                if i_level in attn_layers:
                    # print(f"add attn in layer:{i_level}")
                    attn.append(AttnBlock1D(block_in))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level in down_layers:
                down.downsample = Downsample1D(block_in, resamp_with_conv)
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock1D(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout,
                                       kernel_size=kernel_size)
        self.mid.attn_1 = AttnBlock1D(block_in)
        self.mid.block_2 = ResnetBlock1D(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout,
                                       kernel_size=kernel_size)

        # end
        self.norm_out = Normalize(block_in)# GroupNorm
        self.conv_out = torch.nn.Conv1d(block_in,
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=kernel_size,
                                        stride=1,
                                        padding=kernel_size//2)

    def forward(self, x):
        # timestep embedding
        temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_layers):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level in self.down_layers:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h
    
class Decoder1D(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_layers = [],down_layers = [], dropout=0.0,kernel_size=3, resamp_with_conv=True, in_channels,
                z_channels, give_pre_end=False, tanh_out=False, **ignorekwargs):
        super().__init__()
        self.ch = ch
        self.temb_ch = 0
        self.num_layers = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.in_channels = in_channels
        self.give_pre_end = give_pre_end
        self.tanh_out = tanh_out
        self.down_layers = [i+1 for i in down_layers] # each downlayer add one
        print(f"upsample rates is {2**len(down_layers)}")
        
        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,)+tuple(ch_mult)
        block_in = ch*ch_mult[self.num_layers-1]


        # z to block_in
        self.conv_in = torch.nn.Conv1d(z_channels,
                                       block_in,
                                       kernel_size=kernel_size,
                                       stride=1,
                                       padding=kernel_size//2)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock1D(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = AttnBlock1D(block_in)
        self.mid.block_2 = ResnetBlock1D(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_layers)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks+1):
                block.append(ResnetBlock1D(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if i_level in attn_layers:
                    # print(f"add attn in layer:{i_level}")
                    attn.append(AttnBlock1D(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level in self.down_layers:
                up.upsample = Upsample1D(block_in, resamp_with_conv)
            self.up.insert(0, up) # prepend to get consistent order

        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv1d(block_in,
                                        out_ch,
                                        kernel_size=kernel_size,
                                        stride=1,
                                        padding=kernel_size//2)

    def forward(self, z):
        #assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape

        # timestep embedding
        temb = None

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_layers)):
            for i_block in range(self.num_res_blocks+1):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level in self.down_layers:
                h = self.up[i_level].upsample(h)

        # end
        if self.give_pre_end:
            return h

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        if self.tanh_out:
            h = torch.tanh(h)
        return h