File size: 7,675 Bytes
a84a65c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os.path

import torch
import torch.nn as nn
from functools import partial
from transformers import T5Tokenizer, T5EncoderModel, AutoTokenizer
from importlib_resources import files
from ldm.modules.encoders.CLAP.utils import read_config_as_args
from ldm.modules.encoders.CLAP.clap import TextEncoder
from ldm.util import count_params
import numpy as np




class Video_Feat_Encoder_NoPosembed(nn.Module):
    """ Transform the video feat encoder"""

    def __init__(self, origin_dim, embed_dim, seq_len=40):
        super().__init__()
        self.embedder = nn.Sequential(nn.Linear(origin_dim, embed_dim))

    def forward(self, x):
        # Revise the shape here:
        x = self.embedder(x)        # B x 117 x C

        return x



class Video_Feat_Encoder_NoPosembed_inpaint(Video_Feat_Encoder_NoPosembed):
    """ Transform the video feat encoder"""

    def forward(self, x):
        # Revise the shape here:
        video, spec = x['mix_video_feat'], x['mix_spec']
        video = self.embedder(video)        # B x 117 x C

        return (video, spec)

class AbstractEncoder(nn.Module):
    def __init__(self):
        super().__init__()

    def encode(self, *args, **kwargs):
        raise NotImplementedError


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode

    does not change anymore."""
    return self

class FrozenFLANEmbedder(AbstractEncoder):
    """Uses the T5 transformer encoder for text"""

    def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77,

                 freeze=True):  # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
        super().__init__()

        self.tokenizer = T5Tokenizer.from_pretrained(version)
        self.transformer = T5EncoderModel.from_pretrained(version)
        self.device = device
        self.max_length = max_length  # TODO: typical value?
        if freeze:
            self.freeze()

    def freeze(self):
        self.transformer = self.transformer.eval()
        # self.train = disabled_train
        for param in self.parameters():
            param.requires_grad = False

    def forward(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)  # tango的flanT5是不定长度的batch,这里做成定长的batch
        outputs = self.transformer(input_ids=tokens)

        z = outputs.last_hidden_state
        return z

    def encode(self, text):
        return self(text)


class FrozenCLAPEmbedder(AbstractEncoder):
    """Uses the CLAP transformer encoder for text from microsoft"""

    def __init__(self, weights_path, freeze=True, device="cuda", max_length=77):  # clip-vit-base-patch32
        super().__init__()

        model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
        match_params = dict()
        for key in list(model_state_dict.keys()):
            if 'caption_encoder' in key:
                match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]

        config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
        args = read_config_as_args(config_as_str, is_config_str=True)

        self.tokenizer = AutoTokenizer.from_pretrained(args.text_model)  # args.text_model
        self.caption_encoder = TextEncoder(
            args.d_proj, args.text_model, args.transformer_embed_dim
        )

        self.max_length = max_length
        self.device = device
        if freeze: self.freeze()

        print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")

    def freeze(self):  # only freeze
        self.caption_encoder.base = self.caption_encoder.base.eval()
        for param in self.caption_encoder.base.parameters():
            param.requires_grad = False

    def encode(self, text):
        batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
                                        return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
        tokens = batch_encoding["input_ids"].to(self.device)

        outputs = self.caption_encoder.base(input_ids=tokens)
        z = self.caption_encoder.projection(outputs.last_hidden_state)
        return z


class FrozenCLAPFLANEmbedder(AbstractEncoder):
    """Uses the CLAP transformer encoder for text from microsoft"""

    def __init__(self, weights_path, t5version="google/t5-v1_1-large", freeze=True, device="cuda",

                 max_length=77):  # clip-vit-base-patch32
        super().__init__()

        model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
        match_params = dict()
        for key in list(model_state_dict.keys()):
            if 'caption_encoder' in key:
                match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]

        config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
        args = read_config_as_args(config_as_str, is_config_str=True)


        self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model)  # args.text_model
        self.caption_encoder = TextEncoder(
            args.d_proj, args.text_model, args.transformer_embed_dim
        )

        self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
        self.t5_transformer = T5EncoderModel.from_pretrained(t5version)

        self.max_length = max_length
        self.to(device=device)
        if freeze: self.freeze()

        print(
            f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")

    def freeze(self):
        self.caption_encoder = self.caption_encoder.eval()
        for param in self.caption_encoder.parameters():
            param.requires_grad = False

    def to(self, device):
        self.t5_transformer.to(device)
        self.caption_encoder.to(device)
        self.device = device

    def encode(self, text):
        ori_caption = text['ori_caption']
        struct_caption = text['struct_caption']
        # print(ori_caption,struct_caption)
        clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length,
                                                  return_length=True,
                                                  return_overflowing_tokens=False, padding="max_length",
                                                  return_tensors="pt")
        ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
        t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length,
                                              return_length=True,
                                              return_overflowing_tokens=False, padding="max_length",
                                              return_tensors="pt")
        struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
        outputs = self.caption_encoder.base(input_ids=ori_tokens)
        z = self.caption_encoder.projection(outputs.last_hidden_state)
        z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
        return torch.concat([z, z2], dim=1)