Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,675 Bytes
a84a65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os.path
import torch
import torch.nn as nn
from functools import partial
from transformers import T5Tokenizer, T5EncoderModel, AutoTokenizer
from importlib_resources import files
from ldm.modules.encoders.CLAP.utils import read_config_as_args
from ldm.modules.encoders.CLAP.clap import TextEncoder
from ldm.util import count_params
import numpy as np
class Video_Feat_Encoder_NoPosembed(nn.Module):
""" Transform the video feat encoder"""
def __init__(self, origin_dim, embed_dim, seq_len=40):
super().__init__()
self.embedder = nn.Sequential(nn.Linear(origin_dim, embed_dim))
def forward(self, x):
# Revise the shape here:
x = self.embedder(x) # B x 117 x C
return x
class Video_Feat_Encoder_NoPosembed_inpaint(Video_Feat_Encoder_NoPosembed):
""" Transform the video feat encoder"""
def forward(self, x):
# Revise the shape here:
video, spec = x['mix_video_feat'], x['mix_spec']
video = self.embedder(video) # B x 117 x C
return (video, spec)
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
def disabled_train(self, mode=True):
"""Overwrite model.train with this function to make sure train/eval mode
does not change anymore."""
return self
class FrozenFLANEmbedder(AbstractEncoder):
"""Uses the T5 transformer encoder for text"""
def __init__(self, version="google/flan-t5-large", device="cuda", max_length=77,
freeze=True): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
super().__init__()
self.tokenizer = T5Tokenizer.from_pretrained(version)
self.transformer = T5EncoderModel.from_pretrained(version)
self.device = device
self.max_length = max_length # TODO: typical value?
if freeze:
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
# self.train = disabled_train
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device) # tango的flanT5是不定长度的batch,这里做成定长的batch
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)
class FrozenCLAPEmbedder(AbstractEncoder):
"""Uses the CLAP transformer encoder for text from microsoft"""
def __init__(self, weights_path, freeze=True, device="cuda", max_length=77): # clip-vit-base-patch32
super().__init__()
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
match_params = dict()
for key in list(model_state_dict.keys()):
if 'caption_encoder' in key:
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
args = read_config_as_args(config_as_str, is_config_str=True)
self.tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
self.caption_encoder = TextEncoder(
args.d_proj, args.text_model, args.transformer_embed_dim
)
self.max_length = max_length
self.device = device
if freeze: self.freeze()
print(f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
def freeze(self): # only freeze
self.caption_encoder.base = self.caption_encoder.base.eval()
for param in self.caption_encoder.base.parameters():
param.requires_grad = False
def encode(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.caption_encoder.base(input_ids=tokens)
z = self.caption_encoder.projection(outputs.last_hidden_state)
return z
class FrozenCLAPFLANEmbedder(AbstractEncoder):
"""Uses the CLAP transformer encoder for text from microsoft"""
def __init__(self, weights_path, t5version="google/t5-v1_1-large", freeze=True, device="cuda",
max_length=77): # clip-vit-base-patch32
super().__init__()
model_state_dict = torch.load(weights_path, map_location=torch.device('cpu'))['model']
match_params = dict()
for key in list(model_state_dict.keys()):
if 'caption_encoder' in key:
match_params[key.replace('caption_encoder.', '')] = model_state_dict[key]
config_as_str = files('ldm').joinpath('modules/encoders/CLAP/config.yml').read_text()
args = read_config_as_args(config_as_str, is_config_str=True)
self.clap_tokenizer = AutoTokenizer.from_pretrained(args.text_model) # args.text_model
self.caption_encoder = TextEncoder(
args.d_proj, args.text_model, args.transformer_embed_dim
)
self.t5_tokenizer = T5Tokenizer.from_pretrained(t5version)
self.t5_transformer = T5EncoderModel.from_pretrained(t5version)
self.max_length = max_length
self.to(device=device)
if freeze: self.freeze()
print(
f"{self.caption_encoder.__class__.__name__} comes with {count_params(self.caption_encoder) * 1.e-6:.2f} M params.")
def freeze(self):
self.caption_encoder = self.caption_encoder.eval()
for param in self.caption_encoder.parameters():
param.requires_grad = False
def to(self, device):
self.t5_transformer.to(device)
self.caption_encoder.to(device)
self.device = device
def encode(self, text):
ori_caption = text['ori_caption']
struct_caption = text['struct_caption']
# print(ori_caption,struct_caption)
clap_batch_encoding = self.clap_tokenizer(ori_caption, truncation=True, max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False, padding="max_length",
return_tensors="pt")
ori_tokens = clap_batch_encoding["input_ids"].to(self.device)
t5_batch_encoding = self.t5_tokenizer(struct_caption, truncation=True, max_length=self.max_length,
return_length=True,
return_overflowing_tokens=False, padding="max_length",
return_tensors="pt")
struct_tokens = t5_batch_encoding["input_ids"].to(self.device)
outputs = self.caption_encoder.base(input_ids=ori_tokens)
z = self.caption_encoder.projection(outputs.last_hidden_state)
z2 = self.t5_transformer(input_ids=struct_tokens).last_hidden_state
return torch.concat([z, z2], dim=1)
|