Spaces:
Runtime error
Runtime error
import argparse, os, sys, glob | |
import datetime, time | |
from omegaconf import OmegaConf | |
from tqdm import tqdm | |
from einops import rearrange, repeat | |
from collections import OrderedDict | |
import torch | |
import torchvision | |
import torchvision.transforms as transforms | |
from pytorch_lightning import seed_everything | |
from PIL import Image | |
sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) | |
from lvdm.models.samplers.ddim import DDIMSampler | |
from lvdm.models.samplers.ddim_multiplecond import DDIMSampler as DDIMSampler_multicond | |
from utils.utils import instantiate_from_config | |
def get_filelist(data_dir, postfixes): | |
patterns = [os.path.join(data_dir, f"*.{postfix}") for postfix in postfixes] | |
file_list = [] | |
for pattern in patterns: | |
file_list.extend(glob.glob(pattern)) | |
file_list.sort() | |
return file_list | |
def load_model_checkpoint(model, ckpt): | |
state_dict = torch.load(ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
try: | |
model.load_state_dict(state_dict, strict=True) | |
except: | |
## rename the keys for 256x256 model | |
new_pl_sd = OrderedDict() | |
for k,v in state_dict.items(): | |
new_pl_sd[k] = v | |
for k in list(new_pl_sd.keys()): | |
if "framestride_embed" in k: | |
new_key = k.replace("framestride_embed", "fps_embedding") | |
new_pl_sd[new_key] = new_pl_sd[k] | |
del new_pl_sd[k] | |
model.load_state_dict(new_pl_sd, strict=True) | |
else: | |
# deepspeed | |
new_pl_sd = OrderedDict() | |
for key in state_dict['module'].keys(): | |
new_pl_sd[key[16:]]=state_dict['module'][key] | |
model.load_state_dict(new_pl_sd) | |
print('>>> model checkpoint loaded.') | |
return model | |
def load_prompts(prompt_file): | |
f = open(prompt_file, 'r') | |
prompt_list = [] | |
for idx, line in enumerate(f.readlines()): | |
l = line.strip() | |
if len(l) != 0: | |
prompt_list.append(l) | |
f.close() | |
return prompt_list | |
def load_data_prompts(data_dir, video_size=(256,256), video_frames=16, interp=False): | |
transform = transforms.Compose([ | |
transforms.Resize(min(video_size)), | |
transforms.CenterCrop(video_size), | |
transforms.ToTensor(), | |
transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))]) | |
## load prompts | |
prompt_file = get_filelist(data_dir, ['txt']) | |
assert len(prompt_file) > 0, "Error: found NO prompt file!" | |
###### default prompt | |
default_idx = 0 | |
default_idx = min(default_idx, len(prompt_file)-1) | |
if len(prompt_file) > 1: | |
print(f"Warning: multiple prompt files exist. The one {os.path.split(prompt_file[default_idx])[1]} is used.") | |
## only use the first one (sorted by name) if multiple exist | |
## load video | |
file_list = get_filelist(data_dir, ['jpg', 'png', 'jpeg', 'JPEG', 'PNG']) | |
# assert len(file_list) == n_samples, "Error: data and prompts are NOT paired!" | |
data_list = [] | |
filename_list = [] | |
prompt_list = load_prompts(prompt_file[default_idx]) | |
n_samples = len(prompt_list) | |
for idx in range(n_samples): | |
if interp: | |
image1 = Image.open(file_list[2*idx]).convert('RGB') | |
image_tensor1 = transform(image1).unsqueeze(1) # [c,1,h,w] | |
image2 = Image.open(file_list[2*idx+1]).convert('RGB') | |
image_tensor2 = transform(image2).unsqueeze(1) # [c,1,h,w] | |
frame_tensor1 = repeat(image_tensor1, 'c t h w -> c (repeat t) h w', repeat=video_frames//2) | |
frame_tensor2 = repeat(image_tensor2, 'c t h w -> c (repeat t) h w', repeat=video_frames//2) | |
frame_tensor = torch.cat([frame_tensor1, frame_tensor2], dim=1) | |
_, filename = os.path.split(file_list[idx*2]) | |
else: | |
image = Image.open(file_list[idx]).convert('RGB') | |
image_tensor = transform(image).unsqueeze(1) # [c,1,h,w] | |
frame_tensor = repeat(image_tensor, 'c t h w -> c (repeat t) h w', repeat=video_frames) | |
_, filename = os.path.split(file_list[idx]) | |
data_list.append(frame_tensor) | |
filename_list.append(filename) | |
return filename_list, data_list, prompt_list | |
def save_results(prompt, samples, filename, fakedir, fps=8, loop=False): | |
filename = filename.split('.')[0]+'.mp4' | |
prompt = prompt[0] if isinstance(prompt, list) else prompt | |
## save video | |
videos = [samples] | |
savedirs = [fakedir] | |
for idx, video in enumerate(videos): | |
if video is None: | |
continue | |
# b,c,t,h,w | |
video = video.detach().cpu() | |
video = torch.clamp(video.float(), -1., 1.) | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
if loop: | |
video = video[:-1,...] | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n), padding=0) for framesheet in video] #[3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, h, n*w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
path = os.path.join(savedirs[idx], filename) | |
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) ## crf indicates the quality | |
def save_results_seperate(prompt, samples, filename, fakedir, fps=10, loop=False): | |
prompt = prompt[0] if isinstance(prompt, list) else prompt | |
## save video | |
videos = [samples] | |
savedirs = [fakedir] | |
for idx, video in enumerate(videos): | |
if video is None: | |
continue | |
# b,c,t,h,w | |
video = video.detach().cpu() | |
if loop: # remove the last frame | |
video = video[:,:,:-1,...] | |
video = torch.clamp(video.float(), -1., 1.) | |
n = video.shape[0] | |
for i in range(n): | |
grid = video[i,...] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(1, 2, 3, 0) #thwc | |
path = os.path.join(savedirs[idx].replace('samples', 'samples_separate'), f'{filename.split(".")[0]}_sample{i}.mp4') | |
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def get_latent_z(model, videos): | |
b, c, t, h, w = videos.shape | |
x = rearrange(videos, 'b c t h w -> (b t) c h w') | |
z = model.encode_first_stage(x) | |
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t) | |
return z | |
def get_latent_z_with_hidden_states(model, videos): | |
b, c, t, h, w = videos.shape | |
x = rearrange(videos, 'b c t h w -> (b t) c h w') | |
encoder_posterior, hidden_states = model.first_stage_model.encode(x, return_hidden_states=True) | |
hidden_states_first_last = [] | |
### use only the first and last hidden states | |
for hid in hidden_states: | |
hid = rearrange(hid, '(b t) c h w -> b c t h w', t=t) | |
hid_new = torch.cat([hid[:, :, 0:1], hid[:, :, -1:]], dim=2) | |
hidden_states_first_last.append(hid_new) | |
z = model.get_first_stage_encoding(encoder_posterior).detach() | |
z = rearrange(z, '(b t) c h w -> b c t h w', b=b, t=t) | |
return z, hidden_states_first_last | |
def image_guided_synthesis(model, prompts, videos, noise_shape, n_samples=1, ddim_steps=50, ddim_eta=1., \ | |
unconditional_guidance_scale=1.0, cfg_img=None, fs=None, text_input=False, multiple_cond_cfg=False, loop=False, interp=False, timestep_spacing='uniform', guidance_rescale=0.0, **kwargs): | |
ddim_sampler = DDIMSampler(model) if not multiple_cond_cfg else DDIMSampler_multicond(model) | |
batch_size = noise_shape[0] | |
fs = torch.tensor([fs] * batch_size, dtype=torch.long, device=model.device) | |
if not text_input: | |
prompts = [""]*batch_size | |
img = videos[:,:,0] #bchw | |
img_emb = model.embedder(img) ## blc | |
img_emb = model.image_proj_model(img_emb) | |
cond_emb = model.get_learned_conditioning(prompts) | |
cond = {"c_crossattn": [torch.cat([cond_emb,img_emb], dim=1)]} | |
if model.model.conditioning_key == 'hybrid': | |
z, hs = get_latent_z_with_hidden_states(model, videos) # b c t h w | |
if loop or interp: | |
img_cat_cond = torch.zeros_like(z) | |
img_cat_cond[:,:,0,:,:] = z[:,:,0,:,:] | |
img_cat_cond[:,:,-1,:,:] = z[:,:,-1,:,:] | |
else: | |
img_cat_cond = z[:,:,:1,:,:] | |
img_cat_cond = repeat(img_cat_cond, 'b c t h w -> b c (repeat t) h w', repeat=z.shape[2]) | |
cond["c_concat"] = [img_cat_cond] # b c 1 h w | |
if unconditional_guidance_scale != 1.0: | |
if model.uncond_type == "empty_seq": | |
prompts = batch_size * [""] | |
uc_emb = model.get_learned_conditioning(prompts) | |
elif model.uncond_type == "zero_embed": | |
uc_emb = torch.zeros_like(cond_emb) | |
uc_img_emb = model.embedder(torch.zeros_like(img)) ## b l c | |
uc_img_emb = model.image_proj_model(uc_img_emb) | |
uc = {"c_crossattn": [torch.cat([uc_emb,uc_img_emb],dim=1)]} | |
if model.model.conditioning_key == 'hybrid': | |
uc["c_concat"] = [img_cat_cond] | |
else: | |
uc = None | |
additional_decode_kwargs = {'ref_context': hs} | |
## we need one more unconditioning image=yes, text="" | |
if multiple_cond_cfg and cfg_img != 1.0: | |
uc_2 = {"c_crossattn": [torch.cat([uc_emb,img_emb],dim=1)]} | |
if model.model.conditioning_key == 'hybrid': | |
uc_2["c_concat"] = [img_cat_cond] | |
kwargs.update({"unconditional_conditioning_img_nonetext": uc_2}) | |
else: | |
kwargs.update({"unconditional_conditioning_img_nonetext": None}) | |
z0 = None | |
cond_mask = None | |
batch_variants = [] | |
for _ in range(n_samples): | |
if z0 is not None: | |
cond_z0 = z0.clone() | |
kwargs.update({"clean_cond": True}) | |
else: | |
cond_z0 = None | |
if ddim_sampler is not None: | |
samples, _ = ddim_sampler.sample(S=ddim_steps, | |
conditioning=cond, | |
batch_size=batch_size, | |
shape=noise_shape[1:], | |
verbose=False, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc, | |
eta=ddim_eta, | |
cfg_img=cfg_img, | |
mask=cond_mask, | |
x0=cond_z0, | |
fs=fs, | |
timestep_spacing=timestep_spacing, | |
guidance_rescale=guidance_rescale, | |
**kwargs | |
) | |
## reconstruct from latent to pixel space | |
batch_images = model.decode_first_stage(samples, **additional_decode_kwargs) | |
index = list(range(samples.shape[2])) | |
del index[1] | |
del index[-2] | |
samples = samples[:,:,index,:,:] | |
## reconstruct from latent to pixel space | |
batch_images_middle = model.decode_first_stage(samples, **additional_decode_kwargs) | |
batch_images[:,:,batch_images.shape[2]//2-1:batch_images.shape[2]//2+1] = batch_images_middle[:,:,batch_images.shape[2]//2-2:batch_images.shape[2]//2] | |
batch_variants.append(batch_images) | |
## variants, batch, c, t, h, w | |
batch_variants = torch.stack(batch_variants) | |
return batch_variants.permute(1, 0, 2, 3, 4, 5) | |
def run_inference(args, gpu_num, gpu_no): | |
## model config | |
config = OmegaConf.load(args.config) | |
model_config = config.pop("model", OmegaConf.create()) | |
## set use_checkpoint as False as when using deepspeed, it encounters an error "deepspeed backend not set" | |
model_config['params']['unet_config']['params']['use_checkpoint'] = False | |
model = instantiate_from_config(model_config) | |
model = model.cuda(gpu_no) | |
model.perframe_ae = args.perframe_ae | |
assert os.path.exists(args.ckpt_path), "Error: checkpoint Not Found!" | |
model = load_model_checkpoint(model, args.ckpt_path) | |
model.eval() | |
## run over data | |
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" | |
assert args.bs == 1, "Current implementation only support [batch size = 1]!" | |
## latent noise shape | |
h, w = args.height // 8, args.width // 8 | |
channels = model.model.diffusion_model.out_channels | |
n_frames = args.video_length | |
print(f'Inference with {n_frames} frames') | |
noise_shape = [args.bs, channels, n_frames, h, w] | |
fakedir = os.path.join(args.savedir, "samples") | |
fakedir_separate = os.path.join(args.savedir, "samples_separate") | |
# os.makedirs(fakedir, exist_ok=True) | |
os.makedirs(fakedir_separate, exist_ok=True) | |
## prompt file setting | |
assert os.path.exists(args.prompt_dir), "Error: prompt file Not Found!" | |
filename_list, data_list, prompt_list = load_data_prompts(args.prompt_dir, video_size=(args.height, args.width), video_frames=n_frames, interp=args.interp) | |
num_samples = len(prompt_list) | |
samples_split = num_samples // gpu_num | |
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples)) | |
#indices = random.choices(list(range(0, num_samples)), k=samples_per_device) | |
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1))) | |
prompt_list_rank = [prompt_list[i] for i in indices] | |
data_list_rank = [data_list[i] for i in indices] | |
filename_list_rank = [filename_list[i] for i in indices] | |
start = time.time() | |
with torch.no_grad(), torch.cuda.amp.autocast(): | |
for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'): | |
prompts = prompt_list_rank[indice:indice+args.bs] | |
videos = data_list_rank[indice:indice+args.bs] | |
filenames = filename_list_rank[indice:indice+args.bs] | |
if isinstance(videos, list): | |
videos = torch.stack(videos, dim=0).to("cuda") | |
else: | |
videos = videos.unsqueeze(0).to("cuda") | |
batch_samples = image_guided_synthesis(model, prompts, videos, noise_shape, args.n_samples, args.ddim_steps, args.ddim_eta, \ | |
args.unconditional_guidance_scale, args.cfg_img, args.frame_stride, args.text_input, args.multiple_cond_cfg, args.loop, args.interp, args.timestep_spacing, args.guidance_rescale) | |
## save each example individually | |
for nn, samples in enumerate(batch_samples): | |
## samples : [n_samples,c,t,h,w] | |
prompt = prompts[nn] | |
filename = filenames[nn] | |
# save_results(prompt, samples, filename, fakedir, fps=8, loop=args.loop) | |
save_results_seperate(prompt, samples, filename, fakedir, fps=8, loop=args.loop) | |
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds") | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--savedir", type=str, default=None, help="results saving path") | |
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path") | |
parser.add_argument("--config", type=str, help="config (yaml) path") | |
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts") | |
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) | |
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) | |
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) | |
parser.add_argument("--bs", type=int, default=1, help="batch size for inference, should be one") | |
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") | |
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") | |
parser.add_argument("--frame_stride", type=int, default=3, help="frame stride control for 256 model (larger->larger motion), FPS control for 512 or 1024 model (smaller->larger motion)") | |
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") | |
parser.add_argument("--seed", type=int, default=123, help="seed for seed_everything") | |
parser.add_argument("--video_length", type=int, default=16, help="inference video length") | |
parser.add_argument("--negative_prompt", action='store_true', default=False, help="negative prompt") | |
parser.add_argument("--text_input", action='store_true', default=False, help="input text to I2V model or not") | |
parser.add_argument("--multiple_cond_cfg", action='store_true', default=False, help="use multi-condition cfg or not") | |
parser.add_argument("--cfg_img", type=float, default=None, help="guidance scale for image conditioning") | |
parser.add_argument("--timestep_spacing", type=str, default="uniform", help="The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.") | |
parser.add_argument("--guidance_rescale", type=float, default=0.0, help="guidance rescale in [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891)") | |
parser.add_argument("--perframe_ae", action='store_true', default=False, help="if we use per-frame AE decoding, set it to True to save GPU memory, especially for the model of 576x1024") | |
## currently not support looping video and generative frame interpolation | |
parser.add_argument("--loop", action='store_true', default=False, help="generate looping videos or not") | |
parser.add_argument("--interp", action='store_true', default=False, help="generate generative frame interpolation or not") | |
return parser | |
if __name__ == '__main__': | |
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
print("@DynamiCrafter cond-Inference: %s"%now) | |
parser = get_parser() | |
args = parser.parse_args() | |
seed_everything(args.seed) | |
rank, gpu_num = 0, 1 | |
run_inference(args, gpu_num, rank) |