Spaces:
Runtime error
Runtime error
File size: 12,576 Bytes
9e62d8e 40ba0ea 9f5d69c 9e62d8e 40ba0ea 9e62d8e 40ba0ea 9e62d8e 40ba0ea 30421b7 4a28ca5 9e62d8e 77b5a47 4a28ca5 9e62d8e 30421b7 4a28ca5 30421b7 9e62d8e 4a28ca5 77b5a47 4a28ca5 9e62d8e 4a28ca5 30421b7 395e196 30421b7 4a28ca5 30421b7 9f5d69c 77b5a47 30421b7 9e62d8e 30421b7 9e62d8e 30421b7 9e62d8e 30421b7 9e62d8e 30421b7 9e62d8e 30421b7 9e62d8e 30421b7 9e62d8e 30421b7 4a28ca5 30421b7 77b5a47 30421b7 9e62d8e 77b5a47 395e196 9f5d69c 4a28ca5 9e62d8e 4a28ca5 9e62d8e 30421b7 9e62d8e 4a28ca5 9e62d8e 4a28ca5 9e62d8e 4a28ca5 9f5d69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
import re
from pprint import pprint
from transformers import AutoTokenizer
from constants.models import AVAILABLE_MODELS
from utils.logger import logger
class MessageComposer:
def __init__(self, model: str = None):
if model in AVAILABLE_MODELS:
self.model = model
else:
self.model = "mixtral-8x7b"
self.system_roles = ["system"]
self.inst_roles = ["user", "system", "inst"]
self.answer_roles = ["assistant", "bot", "answer", "model"]
self.default_role = "user"
def concat_messages_by_role(self, messages):
def is_same_role(role1, role2):
if (
(role1 == role2)
or (role1 in self.inst_roles and role2 in self.inst_roles)
or (role1 in self.answer_roles and role2 in self.answer_roles)
):
return True
else:
return False
concat_messages = []
for message in messages:
role = message["role"]
content = message["content"]
if concat_messages and is_same_role(role, concat_messages[-1]["role"]):
concat_messages[-1]["content"] += "\n" + content
else:
if role in self.inst_roles:
message["role"] = "inst"
elif role in self.answer_roles:
message["role"] = "answer"
else:
message["role"] = "inst"
concat_messages.append(message)
return concat_messages
def merge(self, messages) -> str:
# Mistral and Mixtral:
# <s> [INST] Instruction [/INST] Model answer </s> [INST] Follow-up instruction [/INST]
# OpenChat:
# GPT4 Correct User: Hello<|end_of_turn|>GPT4 Correct Assistant: Hi<|end_of_turn|>GPT4 Correct User: How are you today?<|end_of_turn|>GPT4 Correct Assistant:
# Nous Mixtral:
# <|im_start|>system
# You are "Hermes 2".<|im_end|>
# <|im_start|>user
# Hello, who are you?<|im_end|>
# <|im_start|>assistant
# Google Gemma-it
# <start_of_turn>user
# How does the brain work?<end_of_turn>
# <start_of_turn>model
self.messages = messages
self.merged_str = ""
# https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1#instruction-format
if self.model in ["mixtral-8x7b", "mistral-7b"]:
self.messages = self.concat_messages_by_role(messages)
self.cached_str = ""
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.cached_str = f"[INST] {content} [/INST]"
elif role in self.answer_roles:
self.merged_str += f"<s> {self.cached_str} {content} </s>\n"
self.cached_str = ""
else:
self.cached_str = f"[INST] {content} [/INST]"
if self.cached_str:
self.merged_str += f"{self.cached_str}"
# https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
elif self.model in ["nous-mixtral-8x7b"]:
self.merged_str_list = []
for message in self.messages:
role = message["role"]
content = message["content"]
if role not in ["system", "user", "assistant"]:
role = self.default_role
message_line = f"<|im_start|>{role}\n{content}<|im_end|>"
self.merged_str_list.append(message_line)
self.merged_str_list.append("<|im_start|>assistant")
self.merged_str = "\n".join(self.merged_str_list)
# https://huggingface.co/openchat/openchat-3.5-0106
elif self.model in ["openchat-3.5"]:
tokenizer = AutoTokenizer.from_pretrained("openchat/openchat-3.5-0106")
self.merged_str = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# self.messages = self.concat_messages_by_role(messages)
# self.merged_str_list = []
# self.end_of_turn = "<|end_of_turn|>"
# for message in self.messages:
# role = message["role"]
# content = message["content"]
# if role in self.inst_roles:
# self.merged_str_list.append(
# f"GPT4 Correct User:\n{content}{self.end_of_turn}"
# )
# elif role in self.answer_roles:
# self.merged_str_list.append(
# f"GPT4 Correct Assistant:\n{content}{self.end_of_turn}"
# )
# else:
# self.merged_str_list.append(
# f"GPT4 Correct User: {content}{self.end_of_turn}"
# )
# self.merged_str_list.append(f"GPT4 Correct Assistant:\n")
# self.merged_str = "\n".join(self.merged_str_list)
# https://huggingface.co/google/gemma-7b-it#chat-template
elif self.model in ["gemma-7b"]:
self.messages = self.concat_messages_by_role(messages)
self.merged_str_list = []
self.end_of_turn = "<end_of_turn>"
self.start_of_turn = "<start_of_turn>"
for message in self.messages:
role = message["role"]
content = message["content"]
if role in self.inst_roles:
self.merged_str_list.append(
f"{self.start_of_turn}user\n{content}{self.end_of_turn}"
)
elif role in self.answer_roles:
self.merged_str_list.append(
f"{self.start_of_turn}model\n{content}{self.end_of_turn}"
)
else:
self.merged_str_list.append(
f"{self.start_of_turn}user\n{content}{self.end_of_turn}"
)
self.merged_str_list.append(f"{self.start_of_turn}model\n")
self.merged_str = "\n".join(self.merged_str_list)
else:
self.merged_str = "\n".join(
[
f'`{message["role"]}`:\n{message["content"]}\n'
for message in self.messages
]
)
return self.merged_str
def convert_pair_matches_to_messages(self, pair_matches_list):
messages = []
if len(pair_matches_list) <= 0:
messages = [
{
"role": "user",
"content": self.merged_str,
}
]
else:
for match in pair_matches_list:
inst = match.group("inst")
answer = match.group("answer")
messages.extend(
[
{"role": "user", "content": inst.strip()},
{"role": "assistant", "content": answer.strip()},
]
)
return messages
def append_last_instruction_to_messages(self, inst_matches_list, pair_matches_list):
if len(inst_matches_list) > len(pair_matches_list):
self.messages.extend(
[
{
"role": "user",
"content": inst_matches_list[-1].group("inst").strip(),
}
]
)
def split(self, merged_str) -> list:
self.merged_str = merged_str
self.messages = []
if self.model in ["mixtral-8x7b", "mistral-7b"]:
pair_pattern = (
r"<s>\s*\[INST\](?P<inst>[\s\S]*?)\[/INST\](?P<answer>[\s\S]*?)</s>"
)
pair_matches = re.finditer(pair_pattern, self.merged_str, re.MULTILINE)
pair_matches_list = list(pair_matches)
self.messages = self.convert_pair_matches_to_messages(pair_matches_list)
inst_pattern = r"\[INST\](?P<inst>[\s\S]*?)\[/INST\]"
inst_matches = re.finditer(inst_pattern, self.merged_str, re.MULTILINE)
inst_matches_list = list(inst_matches)
self.append_last_instruction_to_messages(
inst_matches_list, pair_matches_list
)
elif self.model in ["nous-mixtral-8x7b"]:
# https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO#prompt-format
# message_pattern = r"<\|im_start\|>(?P<role>system|user|assistant)[\s\n]*(?P<content>[\s\S]*?)<\|im_end\|>"
message_pattern = r"<\|im_start\|>(?P<role>system|user|assistant)[\s\n]*(?P<content>[\s\S]*?)<\|im_end\|>"
message_matches = re.finditer(
message_pattern, self.merged_str, flags=re.MULTILINE | re.IGNORECASE
)
message_matches_list = list(message_matches)
logger.note(f"message_matches_list: {message_matches_list}")
for match in message_matches_list:
role = match.group("role")
content = match.group("content")
self.messages.append({"role": role, "content": content.strip()})
elif self.model in ["openchat-3.5"]:
pair_pattern = r"GPT4 Correct User:(?P<inst>[\s\S]*?)<\|end_of_turn\|>\s*GPT4 Correct Assistant:(?P<answer>[\s\S]*?)<\|end_of_turn\|>"
pair_matches = re.finditer(
pair_pattern, self.merged_str, flags=re.MULTILINE | re.IGNORECASE
)
pair_matches_list = list(pair_matches)
self.messages = self.convert_pair_matches_to_messages(pair_matches_list)
inst_pattern = r"GPT4 Correct User:(?P<inst>[\s\S]*?)<\|end_of_turn\|>"
inst_matches = re.finditer(
inst_pattern, self.merged_str, flags=re.MULTILINE | re.IGNORECASE
)
inst_matches_list = list(inst_matches)
self.append_last_instruction_to_messages(
inst_matches_list, pair_matches_list
)
# https://huggingface.co/google/gemma-7b-it#chat-template
elif self.model in ["gemma-7b"]:
pair_pattern = r"<start_of_turn>user[\s\n]*(?P<inst>[\s\S]*?)<end_of_turn>[\s\n]*<start_of_turn>model(?P<answer>[\s\S]*?)<end_of_turn>"
pair_matches = re.finditer(
pair_pattern, self.merged_str, flags=re.MULTILINE | re.IGNORECASE
)
pair_matches_list = list(pair_matches)
self.messages = self.convert_pair_matches_to_messages(pair_matches_list)
inst_pattern = r"<start_of_turn>user\n(?P<inst>[\s\S]*?)<end_of_turn>"
inst_matches = re.finditer(
inst_pattern, self.merged_str, flags=re.MULTILINE | re.IGNORECASE
)
inst_matches_list = list(inst_matches)
self.append_last_instruction_to_messages(
inst_matches_list, pair_matches_list
)
else:
self.messages = [
{
"role": "user",
"content": self.merged_str,
}
]
return self.messages
if __name__ == "__main__":
# model = "mixtral-8x7b"
# model = "nous-mixtral-8x7b"
# model = "gemma-7b"
model = "openchat-3.5"
composer = MessageComposer(model)
messages = [
{
"role": "system",
"content": "You are a LLM developed by OpenAI.\nYour name is GPT-4.",
},
{"role": "user", "content": "Hello, who are you?"},
{"role": "assistant", "content": "I am a bot."},
{"role": "user", "content": "What is your name?"},
# {"role": "assistant", "content": "My name is Bing."},
# {"role": "user", "content": "Tell me a joke."},
# {"role": "assistant", "content": "What is a robot's favorite type of music?"},
# {
# "role": "user",
# "content": "How many questions have I asked? Please list them.",
# },
]
logger.note(f"model: {composer.model}")
merged_str = composer.merge(messages)
logger.note("merged_str:")
logger.mesg(merged_str)
logger.note("splitted messages:")
pprint(composer.split(merged_str))
# logger.note("merged merged_str:")
# logger.mesg(composer.merge(composer.split(merged_str)))
# python -m messagers.message_composer
|