Spaces:
Sleeping
Sleeping
hanhainebula
commited on
Commit
·
d6979e5
1
Parent(s):
77e581d
init commit: upload backend code
Browse files- app.py +71 -58
- requirements.txt +15 -1
- src/backend.py +284 -0
- src/envs.py +35 -0
app.py
CHANGED
@@ -1,63 +1,76 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import multiprocessing
|
4 |
+
|
5 |
+
from src.backend import pull_search_results
|
6 |
+
from src.envs import (
|
7 |
+
API, REPO_ID, START_COMMIT_ID,
|
8 |
+
LOG_DIR, HF_CACHE_DIR,
|
9 |
+
HF_SEARCH_RESULTS_REPO_DIR, HF_EVAL_RESULTS_REPO_DIR,
|
10 |
+
UNZIP_TARGET_DIR,
|
11 |
+
TIME_DURATION,
|
12 |
+
EVAL_K_VALUES,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
)
|
14 |
|
15 |
+
def restart_space():
|
16 |
+
API.restart_space(repo_id=REPO_ID)
|
17 |
+
|
18 |
+
|
19 |
+
def get_log_files():
|
20 |
+
return sorted([f for f in os.listdir(LOG_DIR) if f.endswith('.log')])
|
21 |
+
|
22 |
+
|
23 |
+
def refresh_log_files():
|
24 |
+
return get_log_files()
|
25 |
+
|
26 |
+
|
27 |
+
def display_log_content(selected_file):
|
28 |
+
if selected_file:
|
29 |
+
with open(os.path.join(LOG_DIR, selected_file), 'r', encoding='utf-8') as file:
|
30 |
+
return file.read()
|
31 |
+
return "No log file selected"
|
32 |
+
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
+
process = multiprocessing.Process(
|
36 |
+
target=pull_search_results,
|
37 |
+
args=(
|
38 |
+
HF_SEARCH_RESULTS_REPO_DIR,
|
39 |
+
HF_EVAL_RESULTS_REPO_DIR,
|
40 |
+
UNZIP_TARGET_DIR,
|
41 |
+
EVAL_K_VALUES,
|
42 |
+
HF_CACHE_DIR,
|
43 |
+
TIME_DURATION,
|
44 |
+
START_COMMIT_ID,
|
45 |
+
),
|
46 |
+
)
|
47 |
+
process.start()
|
48 |
+
|
49 |
+
with gr.Blocks() as demo:
|
50 |
+
gr.Markdown("## Select a log file to view its content")
|
51 |
+
|
52 |
+
log_file_dropdown = gr.Dropdown(
|
53 |
+
choices=refresh_log_files(),
|
54 |
+
label="Select log file",
|
55 |
+
interactive=True,
|
56 |
+
)
|
57 |
+
log_content_box = gr.Textbox(
|
58 |
+
label="Log content",
|
59 |
+
lines=20,
|
60 |
+
interactive=False,
|
61 |
+
)
|
62 |
+
refresh_button = gr.Button(
|
63 |
+
text="Refresh log files",
|
64 |
+
)
|
65 |
+
|
66 |
+
log_file_dropdown.change(
|
67 |
+
fn=display_log_content,
|
68 |
+
inputs=log_file_dropdown,
|
69 |
+
outputs=log_content_box,
|
70 |
+
)
|
71 |
+
refresh_button.click(
|
72 |
+
fn=refresh_log_files,
|
73 |
+
outputs=log_file_dropdown,
|
74 |
+
)
|
75 |
+
|
76 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1 +1,15 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
APScheduler>=3.10.1
|
2 |
+
black>=23.11.0
|
3 |
+
click>=8.1.3
|
4 |
+
datasets>=2.14.5
|
5 |
+
gradio>=4.29.0
|
6 |
+
gradio_client>=0.16.1
|
7 |
+
huggingface-hub>=0.18.0
|
8 |
+
numpy>=1.24.2
|
9 |
+
pandas>=2.0.0
|
10 |
+
python-dateutil>=2.8.2
|
11 |
+
requests>=2.31.0
|
12 |
+
tqdm>=4.65.0
|
13 |
+
accelerate>=0.24.1
|
14 |
+
socksio>=1.0.0
|
15 |
+
air-benchmark>=0.0.4
|
src/backend.py
ADDED
@@ -0,0 +1,284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
import shutil
|
5 |
+
import logging
|
6 |
+
import zipfile
|
7 |
+
from typing import List, Optional
|
8 |
+
from collections import defaultdict
|
9 |
+
|
10 |
+
from air_benchmark.tasks.tasks import check_benchmark_version
|
11 |
+
from air_benchmark.evaluation_utils.data_loader import DataLoader
|
12 |
+
from air_benchmark.evaluation_utils.evaluator import Evaluator
|
13 |
+
|
14 |
+
from src.envs import (
|
15 |
+
API,
|
16 |
+
LOG_DIR, ZIP_CACHE_DIR,
|
17 |
+
SEARCH_RESULTS_REPO, RESULTS_REPO
|
18 |
+
)
|
19 |
+
|
20 |
+
log_file = os.path.join(LOG_DIR, f"backend_{time.strftime('%Y-%m-%d_%H-%M-%S')}.log")
|
21 |
+
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
logging.basicConfig(
|
24 |
+
filename=log_file,
|
25 |
+
filemode='w',
|
26 |
+
level=logging.WARNING,
|
27 |
+
datefmt='%Y-%m-%d %H:%M:%S',
|
28 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
def compute_metrics(
|
33 |
+
benchmark_version: str,
|
34 |
+
search_results_save_dir: str,
|
35 |
+
k_values: List[int] = [1, 3, 5, 10, 50, 100, 1000],
|
36 |
+
cache_dir: Optional[str] = None,
|
37 |
+
):
|
38 |
+
data_loader = DataLoader(benchmark_version, cache_dir=cache_dir)
|
39 |
+
evaluator = Evaluator(data_loader)
|
40 |
+
|
41 |
+
eval_results = evaluator.evaluate_results(search_results_save_dir, k_values=k_values)
|
42 |
+
return eval_results
|
43 |
+
|
44 |
+
|
45 |
+
def save_evaluation_results(
|
46 |
+
eval_results: dict,
|
47 |
+
save_path: str,
|
48 |
+
model_name: str,
|
49 |
+
reranker_name: str,
|
50 |
+
model_link: Optional[str] = None,
|
51 |
+
reranker_link: Optional[str] = None,
|
52 |
+
is_anonymous: bool = False,
|
53 |
+
timestamp: str = None,
|
54 |
+
revision: str = None,
|
55 |
+
):
|
56 |
+
results = defaultdict(list)
|
57 |
+
configs = {}
|
58 |
+
|
59 |
+
for task_type, task_type_results in eval_results.items():
|
60 |
+
for domain, domain_results in task_type_results.items():
|
61 |
+
for lang, lang_results in domain_results.items():
|
62 |
+
for dataset_name, task_results in lang_results.items():
|
63 |
+
for metric, metric_val in task_results.items():
|
64 |
+
_key = f"{model_name}_{reranker_name}_{task_type}_{metric}"
|
65 |
+
results[_key].append({
|
66 |
+
"domain": domain,
|
67 |
+
"lang": lang,
|
68 |
+
"dataset": dataset_name,
|
69 |
+
"value": metric_val,
|
70 |
+
})
|
71 |
+
configs[_key] = {
|
72 |
+
"retrieval_model": model_name,
|
73 |
+
"retrieval_model_link": model_link,
|
74 |
+
"reranking_model": reranker_name,
|
75 |
+
"reranking_model_link": reranker_link,
|
76 |
+
"task": task_type,
|
77 |
+
"metric": metric,
|
78 |
+
"timestamp": timestamp,
|
79 |
+
"is_anonymous": is_anonymous,
|
80 |
+
"revision": revision,
|
81 |
+
}
|
82 |
+
|
83 |
+
results_list = []
|
84 |
+
for k, result in results.items():
|
85 |
+
config = configs[k]
|
86 |
+
results_list.append({
|
87 |
+
"config": config,
|
88 |
+
"results": result
|
89 |
+
})
|
90 |
+
with open(save_path, 'w', encoding='utf-8') as f:
|
91 |
+
json.dump(results_list, f, ensure_ascii=False, indent=4)
|
92 |
+
|
93 |
+
|
94 |
+
def get_file_list(dir_path: str, allowed_suffixes: List[str] = None) -> List[str]:
|
95 |
+
file_paths = set()
|
96 |
+
if os.path.exists(dir_path) and os.path.isdir(dir_path):
|
97 |
+
for root, _, files in os.walk(dir_path):
|
98 |
+
for file in files:
|
99 |
+
if allowed_suffixes is None or any(
|
100 |
+
file.endswith(suffix) for suffix in allowed_suffixes
|
101 |
+
):
|
102 |
+
file_paths.add(os.path.abspath(os.path.join(root, file)))
|
103 |
+
return file_paths
|
104 |
+
|
105 |
+
|
106 |
+
def get_zip_file_path(zip_file_name: str):
|
107 |
+
zip_file_path = None
|
108 |
+
for root, _, files in os.walk(ZIP_CACHE_DIR):
|
109 |
+
for file in files:
|
110 |
+
if file == zip_file_name:
|
111 |
+
zip_file_path = os.path.abspath(os.path.join(root, file))
|
112 |
+
break
|
113 |
+
return zip_file_path
|
114 |
+
|
115 |
+
|
116 |
+
def pull_search_results(
|
117 |
+
hf_search_results_repo_dir: str,
|
118 |
+
hf_eval_results_repo_dir: str,
|
119 |
+
unzip_target_dir: str,
|
120 |
+
k_values: List[int] = [1, 3, 5, 10, 50, 100, 1000],
|
121 |
+
cache_dir: str = None,
|
122 |
+
time_duration: int = 1800,
|
123 |
+
start_commit_id: str = None
|
124 |
+
):
|
125 |
+
if start_commit_id is not None:
|
126 |
+
API.snapshot_download(
|
127 |
+
repo_id=SEARCH_RESULTS_REPO,
|
128 |
+
repo_type="dataset",
|
129 |
+
revision=start_commit_id,
|
130 |
+
local_dir=hf_search_results_repo_dir,
|
131 |
+
etag_timeout=30,
|
132 |
+
allow_patterns=['*.json']
|
133 |
+
)
|
134 |
+
cur_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
|
135 |
+
else:
|
136 |
+
cur_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
|
137 |
+
|
138 |
+
while True:
|
139 |
+
try:
|
140 |
+
API.snapshot_download(
|
141 |
+
repo_id=RESULTS_REPO,
|
142 |
+
repo_type="dataset",
|
143 |
+
local_dir=hf_eval_results_repo_dir,
|
144 |
+
etag_timeout=30
|
145 |
+
)
|
146 |
+
API.snapshot_download(
|
147 |
+
repo_id=SEARCH_RESULTS_REPO,
|
148 |
+
repo_type="dataset",
|
149 |
+
local_dir=hf_search_results_repo_dir,
|
150 |
+
etag_timeout=30,
|
151 |
+
allow_patterns=['*.json']
|
152 |
+
)
|
153 |
+
except Exception as e:
|
154 |
+
logger.error(f"Failed to download the search results or evaluation results: {e}")
|
155 |
+
logger.error(f"Wait for {time_duration} seconds for the next update ...")
|
156 |
+
time.sleep(time_duration)
|
157 |
+
continue
|
158 |
+
|
159 |
+
commit_infos_dict = defaultdict(list)
|
160 |
+
|
161 |
+
new_file_paths = get_file_list(hf_search_results_repo_dir, allowed_suffixes=['.json'])
|
162 |
+
added_file_paths = new_file_paths - cur_file_paths
|
163 |
+
for metadata_file_path in sorted(list(added_file_paths)):
|
164 |
+
with open(metadata_file_path, 'r', encoding='utf-8') as f:
|
165 |
+
metadata = json.load(f)
|
166 |
+
|
167 |
+
model_name = metadata['model_name']
|
168 |
+
model_link = None if not metadata['model_url'] else metadata['model_url']
|
169 |
+
reranker_name = metadata['reranker_name']
|
170 |
+
reranker_link = None if not metadata['reranker_url'] else metadata['reranker_url']
|
171 |
+
benchmark_version = metadata['version']
|
172 |
+
|
173 |
+
try:
|
174 |
+
check_benchmark_version(benchmark_version)
|
175 |
+
except ValueError:
|
176 |
+
logger.error(f"Invalid benchmark version `{benchmark_version}` in file `{metadata_file_path}`. Skip this commit.")
|
177 |
+
continue
|
178 |
+
|
179 |
+
file_name = os.path.basename(metadata_file_path).split('.')[0]
|
180 |
+
zip_file_name = f"{file_name}.zip"
|
181 |
+
|
182 |
+
try:
|
183 |
+
API.snapshot_download(
|
184 |
+
repo_id=SEARCH_RESULTS_REPO,
|
185 |
+
repo_type="dataset",
|
186 |
+
local_dir=ZIP_CACHE_DIR,
|
187 |
+
etag_timeout=30,
|
188 |
+
allow_patterns=[zip_file_name]
|
189 |
+
)
|
190 |
+
zip_file_path = get_zip_file_path(zip_file_name)
|
191 |
+
assert zip_file_path is not None
|
192 |
+
except Exception as e:
|
193 |
+
logger.error(f"Failed to download the zip file `{zip_file_name}`: {e}")
|
194 |
+
continue
|
195 |
+
|
196 |
+
unzip_target_path = os.path.join(unzip_target_dir, benchmark_version, file_name)
|
197 |
+
os.makedirs(unzip_target_path, exist_ok=True)
|
198 |
+
try:
|
199 |
+
with zipfile.ZipFile(zip_file_path, 'r') as zip_ref:
|
200 |
+
zip_ref.extractall(unzip_target_path)
|
201 |
+
except Exception as e:
|
202 |
+
logger.error(f"Failed to unzip the search results `{file_name}`: {e}")
|
203 |
+
continue
|
204 |
+
|
205 |
+
commit_infos_dict[benchmark_version].append({
|
206 |
+
"model_name": model_name,
|
207 |
+
"model_link": model_link,
|
208 |
+
"reranker_name": reranker_name,
|
209 |
+
"reranker_link": reranker_link,
|
210 |
+
"is_anonymous": metadata['is_anonymous'],
|
211 |
+
"file_name": file_name,
|
212 |
+
"timestamp": metadata['timestamp'],
|
213 |
+
"revision": metadata['revision'],
|
214 |
+
"search_results_dir": unzip_target_path
|
215 |
+
})
|
216 |
+
|
217 |
+
# Sort the search results by timestamp
|
218 |
+
for benchmark_version in commit_infos_dict:
|
219 |
+
commit_infos_dict[benchmark_version].sort(key=lambda x: int(os.path.basename(x["search_results_dir"]).split('-')[0]))
|
220 |
+
|
221 |
+
# Save the evaluation results
|
222 |
+
update_flag = False
|
223 |
+
new_models_set = set()
|
224 |
+
for benchmark_version, commit_infos in commit_infos_dict.items():
|
225 |
+
eval_results_dir = os.path.join(hf_eval_results_repo_dir, benchmark_version)
|
226 |
+
os.makedirs(eval_results_dir, exist_ok=True)
|
227 |
+
|
228 |
+
for commit_info in commit_infos:
|
229 |
+
try:
|
230 |
+
eval_results = compute_metrics(
|
231 |
+
benchmark_version,
|
232 |
+
commit_info['search_results_dir'],
|
233 |
+
k_values=k_values,
|
234 |
+
cache_dir=cache_dir,
|
235 |
+
)
|
236 |
+
except KeyError as e:
|
237 |
+
logger.error(f"KeyError: {e}. Skip this commit: {commit_info['file_name']}")
|
238 |
+
continue
|
239 |
+
|
240 |
+
save_dir = os.path.join(eval_results_dir, commit_info['model_name'], commit_info['reranker_name'])
|
241 |
+
os.makedirs(save_dir, exist_ok=True)
|
242 |
+
results_save_path = os.path.join(save_dir, f"results_{commit_info['file_name']}.json")
|
243 |
+
save_evaluation_results(eval_results,
|
244 |
+
results_save_path,
|
245 |
+
commit_info['model_name'],
|
246 |
+
commit_info['reranker_name'],
|
247 |
+
model_link=commit_info['model_link'],
|
248 |
+
reranker_link=commit_info['reranker_link'],
|
249 |
+
is_anonymous=commit_info['is_anonymous'],
|
250 |
+
timestamp=commit_info['timestamp'],
|
251 |
+
revision=commit_info['revision'])
|
252 |
+
new_models_set.add(f"{commit_info['model_name']}_{commit_info['reranker_name']}")
|
253 |
+
|
254 |
+
update_flag = True
|
255 |
+
|
256 |
+
# Commit the updated evaluation results
|
257 |
+
if update_flag:
|
258 |
+
commit_message = "Update evaluation results\nNew models added in this update:\n"
|
259 |
+
for new_model in new_models_set:
|
260 |
+
commit_message += f"\t- {new_model}\n"
|
261 |
+
|
262 |
+
API.upload_folder(
|
263 |
+
repo_id=RESULTS_REPO,
|
264 |
+
folder_path=hf_eval_results_repo_dir,
|
265 |
+
path_in_repo=None,
|
266 |
+
commit_message=commit_message,
|
267 |
+
repo_type="dataset"
|
268 |
+
)
|
269 |
+
logger.warning("Evaluation results updated and pushed to the remote repository.")
|
270 |
+
|
271 |
+
# Print the new models
|
272 |
+
logger.warning("=====================================")
|
273 |
+
logger.warning("New models added in this update:")
|
274 |
+
for new_model in new_models_set:
|
275 |
+
logger.warning("\t" + new_model)
|
276 |
+
|
277 |
+
# Clean the cache
|
278 |
+
shutil.rmtree(ZIP_CACHE_DIR)
|
279 |
+
shutil.rmtree(unzip_target_dir)
|
280 |
+
|
281 |
+
# Wait for the next update
|
282 |
+
logger.warning(f"Wait for {time_duration} seconds for the next update ...")
|
283 |
+
cur_file_paths = new_file_paths
|
284 |
+
time.sleep(time_duration)
|
src/envs.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
|
4 |
+
|
5 |
+
# Info to change for your repository
|
6 |
+
# ----------------------------------
|
7 |
+
HF_TOKEN = os.environ.get("HF_TOKEN", "") # A read/write token for your org
|
8 |
+
START_COMMIT_ID = os.environ.get("START_COMMIT_ID", None)
|
9 |
+
|
10 |
+
OWNER = "AIR-Bench" # "nan" # Change to your org - don't forget to create a results and request dataset, with the correct format!
|
11 |
+
# ----------------------------------
|
12 |
+
|
13 |
+
REPO_ID = f"{OWNER}/leaderboard_backend"
|
14 |
+
# repo for storing the evaluation results
|
15 |
+
RESULTS_REPO = f"{OWNER}/eval_results"
|
16 |
+
# repo for submitting the evaluation
|
17 |
+
SEARCH_RESULTS_REPO = f"{OWNER}/search_results"
|
18 |
+
|
19 |
+
# If you setup a cache later, just change HF_HOME
|
20 |
+
CACHE_PATH = os.getenv("HF_HOME", ".")
|
21 |
+
HF_CACHE_DIR = os.path.join(CACHE_PATH, ".cache")
|
22 |
+
ZIP_CACHE_DIR = os.path.join(CACHE_PATH, ".zip_cache")
|
23 |
+
|
24 |
+
LOG_DIR = os.path.join(CACHE_PATH, "logs")
|
25 |
+
|
26 |
+
API = HfApi(token=HF_TOKEN)
|
27 |
+
|
28 |
+
HF_SEARCH_RESULTS_REPO_DIR = os.path.join(CACHE_PATH, "search_results")
|
29 |
+
HF_EVAL_RESULTS_REPO_DIR = os.path.join(CACHE_PATH, "eval_results")
|
30 |
+
|
31 |
+
UNZIP_TARGET_DIR = os.path.join(CACHE_PATH, "unzip_target_dir")
|
32 |
+
|
33 |
+
TIME_DURATION = 300 # seconds
|
34 |
+
|
35 |
+
EVAL_K_VALUES = [1, 3, 5, 10, 50, 100, 1000]
|