File size: 27,282 Bytes
a983ebc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/01_layers.ipynb.

# %% ../nbs/01_layers.ipynb 2
from __future__ import annotations
from .imports import *
from .torch_imports import *
from .torch_core import *
from torch.nn.utils import weight_norm, spectral_norm

# %% auto 0
__all__ = ['NormType', 'inplace_relu', 'module', 'Identity', 'Lambda', 'PartialLambda', 'Flatten', 'ToTensorBase', 'View',
           'ResizeBatch', 'Debugger', 'sigmoid_range', 'SigmoidRange', 'AdaptiveConcatPool1d', 'AdaptiveConcatPool2d',
           'PoolType', 'adaptive_pool', 'PoolFlatten', 'BatchNorm', 'InstanceNorm', 'BatchNorm1dFlat', 'LinBnDrop',
           'sigmoid', 'sigmoid_', 'vleaky_relu', 'init_default', 'init_linear', 'ConvLayer', 'AdaptiveAvgPool',
           'MaxPool', 'AvgPool', 'trunc_normal_', 'Embedding', 'SelfAttention', 'PooledSelfAttention2d',
           'SimpleSelfAttention', 'icnr_init', 'PixelShuffle_ICNR', 'sequential', 'SequentialEx', 'MergeLayer', 'Cat',
           'SimpleCNN', 'ProdLayer', 'SEModule', 'ResBlock', 'SEBlock', 'SEResNeXtBlock', 'SeparableBlock',
           'TimeDistributed', 'swish', 'Swish', 'MishJitAutoFn', 'mish', 'Mish', 'ParameterModule',
           'children_and_parameters', 'has_children', 'flatten_model', 'NoneReduce', 'in_channels']

# %% ../nbs/01_layers.ipynb 6
def module(*flds, **defaults):
    "Decorator to create an `nn.Module` using `f` as `forward` method"
    pa = [inspect.Parameter(o, inspect.Parameter.POSITIONAL_OR_KEYWORD) for o in flds]
    pb = [inspect.Parameter(k, inspect.Parameter.POSITIONAL_OR_KEYWORD, default=v)
          for k,v in defaults.items()]
    params = pa+pb
    all_flds = [*flds,*defaults.keys()]

    def _f(f):
        class c(nn.Module):
            def __init__(self, *args, **kwargs):
                super().__init__()
                for i,o in enumerate(args): kwargs[all_flds[i]] = o
                kwargs = merge(defaults,kwargs)
                for k,v in kwargs.items(): setattr(self,k,v)
            __repr__ = basic_repr(all_flds)
            forward = f
        c.__signature__ = inspect.Signature(params)
        c.__name__ = c.__qualname__ = f.__name__
        c.__doc__  = f.__doc__
        return c
    return _f

# %% ../nbs/01_layers.ipynb 7
@module()
def Identity(self, x):
    "Do nothing at all"
    return x

# %% ../nbs/01_layers.ipynb 9
@module('func')
def Lambda(self, x):
    "An easy way to create a pytorch layer for a simple `func`"
    return self.func(x)

# %% ../nbs/01_layers.ipynb 11
class PartialLambda(Lambda):
    "Layer that applies `partial(func, **kwargs)`"
    def __init__(self, func, **kwargs):
        super().__init__(partial(func, **kwargs))
        self.repr = f'{func.__name__}, {kwargs}'

    def forward(self, x): return self.func(x)
    def __repr__(self): return f'{self.__class__.__name__}({self.repr})'

# %% ../nbs/01_layers.ipynb 13
@module(full=False)
def Flatten(self, x):
    "Flatten `x` to a single dimension, e.g. at end of a model. `full` for rank-1 tensor"
    return x.view(-1) if self.full else x.view(x.size(0), -1)  # Removed cast to Tensorbase

# %% ../nbs/01_layers.ipynb 15
@module(tensor_cls=TensorBase)
def ToTensorBase(self, x):
    "Convert x to TensorBase class"
    return self.tensor_cls(x)

# %% ../nbs/01_layers.ipynb 17
class View(Module):
    "Reshape `x` to `size`"
    def __init__(self, *size): self.size = size
    def forward(self, x): return x.view(self.size)

# %% ../nbs/01_layers.ipynb 19
class ResizeBatch(Module):
    "Reshape `x` to `size`, keeping batch dim the same size"
    def __init__(self, *size): self.size = size
    def forward(self, x): return x.view((x.size(0),) + self.size)

# %% ../nbs/01_layers.ipynb 21
@module()
def Debugger(self,x):
    "A module to debug inside a model."
    set_trace()
    return x

# %% ../nbs/01_layers.ipynb 22
def sigmoid_range(x, low, high):
    "Sigmoid function with range `(low, high)`"
    return torch.sigmoid(x) * (high - low) + low

# %% ../nbs/01_layers.ipynb 24
@module('low','high')
def SigmoidRange(self, x):
    "Sigmoid module with range `(low, high)`"
    return sigmoid_range(x, self.low, self.high)

# %% ../nbs/01_layers.ipynb 27
class AdaptiveConcatPool1d(Module):
    "Layer that concats `AdaptiveAvgPool1d` and `AdaptiveMaxPool1d`"
    def __init__(self, size=None):
        self.size = size or 1
        self.ap = nn.AdaptiveAvgPool1d(self.size)
        self.mp = nn.AdaptiveMaxPool1d(self.size)
    def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1)

# %% ../nbs/01_layers.ipynb 28
class AdaptiveConcatPool2d(Module):
    "Layer that concats `AdaptiveAvgPool2d` and `AdaptiveMaxPool2d`"
    def __init__(self, size=None):
        self.size = size or 1
        self.ap = nn.AdaptiveAvgPool2d(self.size)
        self.mp = nn.AdaptiveMaxPool2d(self.size)
    def forward(self, x): return torch.cat([self.mp(x), self.ap(x)], 1)

# %% ../nbs/01_layers.ipynb 31
class PoolType: Avg,Max,Cat = 'Avg','Max','Cat'

# %% ../nbs/01_layers.ipynb 32
def adaptive_pool(pool_type):
    return nn.AdaptiveAvgPool2d if pool_type=='Avg' else nn.AdaptiveMaxPool2d if pool_type=='Max' else AdaptiveConcatPool2d

# %% ../nbs/01_layers.ipynb 33
class PoolFlatten(nn.Sequential):
    "Combine `nn.AdaptiveAvgPool2d` and `Flatten`."
    def __init__(self, pool_type=PoolType.Avg): super().__init__(adaptive_pool(pool_type)(1), Flatten())

# %% ../nbs/01_layers.ipynb 36
NormType = Enum('NormType', 'Batch BatchZero Weight Spectral Instance InstanceZero')

# %% ../nbs/01_layers.ipynb 37
def _get_norm(prefix, nf, ndim=2, zero=False, **kwargs):
    "Norm layer with `nf` features and `ndim` initialized depending on `norm_type`."
    assert 1 <= ndim <= 3
    bn = getattr(nn, f"{prefix}{ndim}d")(nf, **kwargs)
    if bn.affine:
        bn.bias.data.fill_(1e-3)
        bn.weight.data.fill_(0. if zero else 1.)
    return bn

# %% ../nbs/01_layers.ipynb 38
@delegates(nn.BatchNorm2d)
def BatchNorm(nf, ndim=2, norm_type=NormType.Batch, **kwargs):
    "BatchNorm layer with `nf` features and `ndim` initialized depending on `norm_type`."
    return _get_norm('BatchNorm', nf, ndim, zero=norm_type==NormType.BatchZero, **kwargs)

# %% ../nbs/01_layers.ipynb 39
@delegates(nn.InstanceNorm2d)
def InstanceNorm(nf, ndim=2, norm_type=NormType.Instance, affine=True, **kwargs):
    "InstanceNorm layer with `nf` features and `ndim` initialized depending on `norm_type`."
    return _get_norm('InstanceNorm', nf, ndim, zero=norm_type==NormType.InstanceZero, affine=affine, **kwargs)

# %% ../nbs/01_layers.ipynb 45
class BatchNorm1dFlat(nn.BatchNorm1d):
    "`nn.BatchNorm1d`, but first flattens leading dimensions"
    def forward(self, x):
        if x.dim()==2: return super().forward(x)
        *f,l = x.shape
        x = x.contiguous().view(-1,l)
        return super().forward(x).view(*f,l)

# %% ../nbs/01_layers.ipynb 47
class LinBnDrop(nn.Sequential):
    "Module grouping `BatchNorm1d`, `Dropout` and `Linear` layers"
    def __init__(self, n_in, n_out, bn=True, p=0., act=None, lin_first=False):
        layers = [BatchNorm(n_out if lin_first else n_in, ndim=1)] if bn else []
        if p != 0: layers.append(nn.Dropout(p))
        lin = [nn.Linear(n_in, n_out, bias=not bn)]
        if act is not None: lin.append(act)
        layers = lin+layers if lin_first else layers+lin
        super().__init__(*layers)

# %% ../nbs/01_layers.ipynb 51
def sigmoid(input, eps=1e-7):
    "Same as `torch.sigmoid`, plus clamping to `(eps,1-eps)"
    return input.sigmoid().clamp(eps,1-eps)

# %% ../nbs/01_layers.ipynb 52
def sigmoid_(input, eps=1e-7):
    "Same as `torch.sigmoid_`, plus clamping to `(eps,1-eps)"
    return input.sigmoid_().clamp_(eps,1-eps)

# %% ../nbs/01_layers.ipynb 53
from torch.nn.init import kaiming_uniform_,uniform_,xavier_uniform_,normal_

# %% ../nbs/01_layers.ipynb 54
def vleaky_relu(input, inplace=True):
    "`F.leaky_relu` with 0.3 slope"
    return F.leaky_relu(input, negative_slope=0.3, inplace=inplace)

# %% ../nbs/01_layers.ipynb 55
for o in F.relu,nn.ReLU,F.relu6,nn.ReLU6,F.leaky_relu,nn.LeakyReLU:
    o.__default_init__ = kaiming_uniform_

# %% ../nbs/01_layers.ipynb 56
for o in F.sigmoid,nn.Sigmoid,F.tanh,nn.Tanh,sigmoid,sigmoid_:
    o.__default_init__ = xavier_uniform_

# %% ../nbs/01_layers.ipynb 57
def init_default(m, func=nn.init.kaiming_normal_):
    "Initialize `m` weights with `func` and set `bias` to 0."
    if func and hasattr(m, 'weight'): func(m.weight)
    with torch.no_grad(): nested_callable(m, 'bias.fill_')(0.)
    return m

# %% ../nbs/01_layers.ipynb 58
def init_linear(m, act_func=None, init='auto', bias_std=0.01):
    if getattr(m,'bias',None) is not None and bias_std is not None:
        if bias_std != 0: normal_(m.bias, 0, bias_std)
        else: m.bias.data.zero_()
    if init=='auto':
        if act_func in (F.relu_,F.leaky_relu_): init = kaiming_uniform_
        else: init = nested_callable(act_func, '__class__.__default_init__')
        if init == noop: init = getcallable(act_func, '__default_init__')
    if callable(init): init(m.weight)

# %% ../nbs/01_layers.ipynb 60
def _conv_func(ndim=2, transpose=False):
    "Return the proper conv `ndim` function, potentially `transposed`."
    assert 1 <= ndim <=3
    return getattr(nn, f'Conv{"Transpose" if transpose else ""}{ndim}d')

# %% ../nbs/01_layers.ipynb 62
defaults.activation=nn.ReLU

# %% ../nbs/01_layers.ipynb 63
class ConvLayer(nn.Sequential):
    "Create a sequence of convolutional (`ni` to `nf`), ReLU (if `use_activ`) and `norm_type` layers."
    @delegates(nn.Conv2d)
    def __init__(self, ni, nf, ks=3, stride=1, padding=None, bias=None, ndim=2, norm_type=NormType.Batch, bn_1st=True,
                 act_cls=defaults.activation, transpose=False, init='auto', xtra=None, bias_std=0.01, **kwargs):
        if padding is None: padding = ((ks-1)//2 if not transpose else 0)
        bn = norm_type in (NormType.Batch, NormType.BatchZero)
        inn = norm_type in (NormType.Instance, NormType.InstanceZero)
        if bias is None: bias = not (bn or inn)
        conv_func = _conv_func(ndim, transpose=transpose)
        conv = conv_func(ni, nf, kernel_size=ks, bias=bias, stride=stride, padding=padding, **kwargs)
        act = None if act_cls is None else act_cls()
        init_linear(conv, act, init=init, bias_std=bias_std)
        if   norm_type==NormType.Weight:   conv = weight_norm(conv)
        elif norm_type==NormType.Spectral: conv = spectral_norm(conv)
        layers = [conv]
        act_bn = []
        if act is not None: act_bn.append(act)
        if bn: act_bn.append(BatchNorm(nf, norm_type=norm_type, ndim=ndim))
        if inn: act_bn.append(InstanceNorm(nf, norm_type=norm_type, ndim=ndim))
        if bn_1st: act_bn.reverse()
        layers += act_bn
        if xtra: layers.append(xtra)
        super().__init__(*layers)

# %% ../nbs/01_layers.ipynb 77
def AdaptiveAvgPool(sz=1, ndim=2):
    "nn.AdaptiveAvgPool layer for `ndim`"
    assert 1 <= ndim <= 3
    return getattr(nn, f"AdaptiveAvgPool{ndim}d")(sz)

# %% ../nbs/01_layers.ipynb 78
def MaxPool(ks=2, stride=None, padding=0, ndim=2, ceil_mode=False):
    "nn.MaxPool layer for `ndim`"
    assert 1 <= ndim <= 3
    return getattr(nn, f"MaxPool{ndim}d")(ks, stride=stride, padding=padding)

# %% ../nbs/01_layers.ipynb 79
def AvgPool(ks=2, stride=None, padding=0, ndim=2, ceil_mode=False):
    "nn.AvgPool layer for `ndim`"
    assert 1 <= ndim <= 3
    return getattr(nn, f"AvgPool{ndim}d")(ks, stride=stride, padding=padding, ceil_mode=ceil_mode)

# %% ../nbs/01_layers.ipynb 81
def trunc_normal_(x, mean=0., std=1.):
    "Truncated normal initialization (approximation)"
    # From https://discuss.pytorch.org/t/implementing-truncated-normal-initializer/4778/12
    return x.normal_().fmod_(2).mul_(std).add_(mean)

# %% ../nbs/01_layers.ipynb 82
class Embedding(nn.Embedding):
    "Embedding layer with truncated normal initialization"
    def __init__(self, ni, nf, std=0.01):
        super().__init__(ni, nf)
        trunc_normal_(self.weight.data, std=std)

# %% ../nbs/01_layers.ipynb 86
class SelfAttention(Module):
    "Self attention layer for `n_channels`."
    def __init__(self, n_channels):
        self.query,self.key,self.value = [self._conv(n_channels, c) for c in (n_channels//8,n_channels//8,n_channels)]
        self.gamma = nn.Parameter(tensor([0.]))

    def _conv(self,n_in,n_out):
        return ConvLayer(n_in, n_out, ks=1, ndim=1, norm_type=NormType.Spectral, act_cls=None, bias=False)

    def forward(self, x):
        #Notation from the paper.
        size = x.size()
        x = x.view(*size[:2],-1)
        f,g,h = self.query(x),self.key(x),self.value(x)
        beta = F.softmax(torch.bmm(f.transpose(1,2), g), dim=1)
        o = self.gamma * torch.bmm(h, beta) + x
        return o.view(*size).contiguous()

# %% ../nbs/01_layers.ipynb 95
class PooledSelfAttention2d(Module):
    "Pooled self attention layer for 2d."
    def __init__(self, n_channels):
        self.n_channels = n_channels
        self.query,self.key,self.value = [self._conv(n_channels, c) for c in (n_channels//8,n_channels//8,n_channels//2)]
        self.out   = self._conv(n_channels//2, n_channels)
        self.gamma = nn.Parameter(tensor([0.]))

    def _conv(self,n_in,n_out):
        return ConvLayer(n_in, n_out, ks=1, norm_type=NormType.Spectral, act_cls=None, bias=False)

    def forward(self, x):
        n_ftrs = x.shape[2]*x.shape[3]
        f = self.query(x).view(-1, self.n_channels//8, n_ftrs)
        g = F.max_pool2d(self.key(x),   [2,2]).view(-1, self.n_channels//8, n_ftrs//4)
        h = F.max_pool2d(self.value(x), [2,2]).view(-1, self.n_channels//2, n_ftrs//4)
        beta = F.softmax(torch.bmm(f.transpose(1, 2), g), -1)
        o = self.out(torch.bmm(h, beta.transpose(1,2)).view(-1, self.n_channels//2, x.shape[2], x.shape[3]))
        return self.gamma * o + x

# %% ../nbs/01_layers.ipynb 97
def _conv1d_spect(ni:int, no:int, ks:int=1, stride:int=1, padding:int=0, bias:bool=False):
    "Create and initialize a `nn.Conv1d` layer with spectral normalization."
    conv = nn.Conv1d(ni, no, ks, stride=stride, padding=padding, bias=bias)
    nn.init.kaiming_normal_(conv.weight)
    if bias: conv.bias.data.zero_()
    return spectral_norm(conv)

# %% ../nbs/01_layers.ipynb 98
class SimpleSelfAttention(Module):
    def __init__(self, n_in:int, ks=1, sym=False):
        self.sym,self.n_in = sym,n_in
        self.conv = _conv1d_spect(n_in, n_in, ks, padding=ks//2, bias=False)
        self.gamma = nn.Parameter(tensor([0.]))

    def forward(self,x):
        if self.sym:
            c = self.conv.weight.view(self.n_in,self.n_in)
            c = (c + c.t())/2
            self.conv.weight = c.view(self.n_in,self.n_in,1)

        size = x.size()
        x = x.view(*size[:2],-1)

        convx = self.conv(x)
        xxT = torch.bmm(x,x.permute(0,2,1).contiguous())
        o = torch.bmm(xxT, convx)
        o = self.gamma * o + x
        return o.view(*size).contiguous()

# %% ../nbs/01_layers.ipynb 101
def icnr_init(x, scale=2, init=nn.init.kaiming_normal_):
    "ICNR init of `x`, with `scale` and `init` function"
    ni,nf,h,w = x.shape
    ni2 = int(ni/(scale**2))
    k = init(x.new_zeros([ni2,nf,h,w])).transpose(0, 1)
    k = k.contiguous().view(ni2, nf, -1)
    k = k.repeat(1, 1, scale**2)
    return k.contiguous().view([nf,ni,h,w]).transpose(0, 1)

# %% ../nbs/01_layers.ipynb 104
class PixelShuffle_ICNR(nn.Sequential):
    "Upsample by `scale` from `ni` filters to `nf` (default `ni`), using `nn.PixelShuffle`."
    def __init__(self, ni, nf=None, scale=2, blur=False, norm_type=NormType.Weight, act_cls=defaults.activation):
        super().__init__()
        nf = ifnone(nf, ni)
        layers = [ConvLayer(ni, nf*(scale**2), ks=1, norm_type=norm_type, act_cls=act_cls, bias_std=0),
                  nn.PixelShuffle(scale)]
        if norm_type == NormType.Weight:
            layers[0][0].weight_v.data.copy_(icnr_init(layers[0][0].weight_v.data))
            layers[0][0].weight_g.data.copy_(((layers[0][0].weight_v.data**2).sum(dim=[1,2,3])**0.5)[:,None,None,None])
        else:
            layers[0][0].weight.data.copy_(icnr_init(layers[0][0].weight.data))
        if blur: layers += [nn.ReplicationPad2d((1,0,1,0)), nn.AvgPool2d(2, stride=1)]
        super().__init__(*layers)

# %% ../nbs/01_layers.ipynb 110
def sequential(*args):
    "Create an `nn.Sequential`, wrapping items with `Lambda` if needed"
    if len(args) != 1 or not isinstance(args[0], OrderedDict):
        args = list(args)
        for i,o in enumerate(args):
            if not isinstance(o,nn.Module): args[i] = Lambda(o)
    return nn.Sequential(*args)

# %% ../nbs/01_layers.ipynb 111
class SequentialEx(Module):
    "Like `nn.Sequential`, but with ModuleList semantics, and can access module input"
    def __init__(self, *layers): self.layers = nn.ModuleList(layers)

    def forward(self, x):
        res = x
        for l in self.layers:
            res.orig = x
            nres = l(res)
            # We have to remove res.orig to avoid hanging refs and therefore memory leaks
            res.orig, nres.orig = None, None
            res = nres
        return res

    def __getitem__(self,i): return self.layers[i]
    def append(self,l):      return self.layers.append(l)
    def extend(self,l):      return self.layers.extend(l)
    def insert(self,i,l):    return self.layers.insert(i,l)

# %% ../nbs/01_layers.ipynb 113
class MergeLayer(Module):
    "Merge a shortcut with the result of the module by adding them or concatenating them if `dense=True`."
    def __init__(self, dense:bool=False): self.dense=dense
    def forward(self, x): return torch.cat([x,x.orig], dim=1) if self.dense else (x+x.orig)

# %% ../nbs/01_layers.ipynb 118
class Cat(nn.ModuleList):
    "Concatenate layers outputs over a given dim"
    def __init__(self, layers, dim=1):
        self.dim=dim
        super().__init__(layers)
    def forward(self, x): return torch.cat([l(x) for l in self], dim=self.dim)

# %% ../nbs/01_layers.ipynb 121
class SimpleCNN(nn.Sequential):
    "Create a simple CNN with `filters`."
    def __init__(self, filters, kernel_szs=None, strides=None, bn=True):
        nl = len(filters)-1
        kernel_szs = ifnone(kernel_szs, [3]*nl)
        strides    = ifnone(strides   , [2]*nl)
        layers = [ConvLayer(filters[i], filters[i+1], kernel_szs[i], stride=strides[i],
                  norm_type=(NormType.Batch if bn and i<nl-1 else None)) for i in range(nl)]
        layers.append(PoolFlatten())
        super().__init__(*layers)

# %% ../nbs/01_layers.ipynb 128
class ProdLayer(Module):
    "Merge a shortcut with the result of the module by multiplying them."
    def forward(self, x): return x * x.orig

# %% ../nbs/01_layers.ipynb 129
inplace_relu = partial(nn.ReLU, inplace=True)

# %% ../nbs/01_layers.ipynb 130
def SEModule(ch, reduction, act_cls=defaults.activation):
    nf = math.ceil(ch//reduction/8)*8
    return SequentialEx(nn.AdaptiveAvgPool2d(1),
                        ConvLayer(ch, nf, ks=1, norm_type=None, act_cls=act_cls),
                        ConvLayer(nf, ch, ks=1, norm_type=None, act_cls=nn.Sigmoid),
                        ProdLayer())

# %% ../nbs/01_layers.ipynb 131
class ResBlock(Module):
    "Resnet block from `ni` to `nh` with `stride`"
    @delegates(ConvLayer.__init__)
    def __init__(self, expansion, ni, nf, stride=1, groups=1, reduction=None, nh1=None, nh2=None, dw=False, g2=1,
                 sa=False, sym=False, norm_type=NormType.Batch, act_cls=defaults.activation, ndim=2, ks=3,
                 pool=AvgPool, pool_first=True, **kwargs):
        norm2 = (NormType.BatchZero if norm_type==NormType.Batch else
                 NormType.InstanceZero if norm_type==NormType.Instance else norm_type)
        if nh2 is None: nh2 = nf
        if nh1 is None: nh1 = nh2
        nf,ni = nf*expansion,ni*expansion
        k0 = dict(norm_type=norm_type, act_cls=act_cls, ndim=ndim, **kwargs)
        k1 = dict(norm_type=norm2, act_cls=None, ndim=ndim, **kwargs)
        convpath  = [ConvLayer(ni,  nh2, ks, stride=stride, groups=ni if dw else groups, **k0),
                     ConvLayer(nh2,  nf, ks, groups=g2, **k1)
        ] if expansion == 1 else [
                     ConvLayer(ni,  nh1, 1, **k0),
                     ConvLayer(nh1, nh2, ks, stride=stride, groups=nh1 if dw else groups, **k0),
                     ConvLayer(nh2,  nf, 1, groups=g2, **k1)]
        if reduction: convpath.append(SEModule(nf, reduction=reduction, act_cls=act_cls))
        if sa: convpath.append(SimpleSelfAttention(nf,ks=1,sym=sym))
        self.convpath = nn.Sequential(*convpath)
        idpath = []
        if ni!=nf: idpath.append(ConvLayer(ni, nf, 1, act_cls=None, ndim=ndim, **kwargs))
        if stride!=1: idpath.insert((1,0)[pool_first], pool(stride, ndim=ndim, ceil_mode=True))
        self.idpath = nn.Sequential(*idpath)
        self.act = defaults.activation(inplace=True) if act_cls is defaults.activation else act_cls()

    def forward(self, x): return self.act(self.convpath(x) + self.idpath(x))

# %% ../nbs/01_layers.ipynb 133
def SEBlock(expansion, ni, nf, groups=1, reduction=16, stride=1, **kwargs):
    return ResBlock(expansion, ni, nf, stride=stride, groups=groups, reduction=reduction, nh1=nf*2, nh2=nf*expansion, **kwargs)

# %% ../nbs/01_layers.ipynb 134
def SEResNeXtBlock(expansion, ni, nf, groups=32, reduction=16, stride=1, base_width=4, **kwargs):
    w = math.floor(nf * (base_width / 64)) * groups
    return ResBlock(expansion, ni, nf, stride=stride, groups=groups, reduction=reduction, nh2=w, **kwargs)

# %% ../nbs/01_layers.ipynb 135
def SeparableBlock(expansion, ni, nf, reduction=16, stride=1, base_width=4, **kwargs):
    return ResBlock(expansion, ni, nf, stride=stride, reduction=reduction, nh2=nf*2, dw=True, **kwargs)

# %% ../nbs/01_layers.ipynb 138
def _stack_tups(tuples, stack_dim=1):
    "Stack tuple of tensors along `stack_dim`"
    return tuple(torch.stack([t[i] for t in tuples], dim=stack_dim) for i in range_of(tuples[0]))

# %% ../nbs/01_layers.ipynb 139
class TimeDistributed(Module):
    "Applies `module` over `tdim` identically for each step, use `low_mem` to compute one at a time." 
    def __init__(self, module, low_mem=False, tdim=1):
        store_attr()
        
    def forward(self, *tensors, **kwargs):
        "input x with shape:(bs,seq_len,channels,width,height)"
        if self.low_mem or self.tdim!=1: 
            return self.low_mem_forward(*tensors, **kwargs)
        else:
            #only support tdim=1
            inp_shape = tensors[0].shape
            bs, seq_len = inp_shape[0], inp_shape[1]   
            out = self.module(*[x.view(bs*seq_len, *x.shape[2:]) for x in tensors], **kwargs)
        return self.format_output(out, bs, seq_len)
    
    def low_mem_forward(self, *tensors, **kwargs):                                           
        "input x with shape:(bs,seq_len,channels,width,height)"
        seq_len = tensors[0].shape[self.tdim]
        args_split = [torch.unbind(x, dim=self.tdim) for x in tensors]
        out = []
        for i in range(seq_len):
            out.append(self.module(*[args[i] for args in args_split]), **kwargs)
        if isinstance(out[0], tuple):
            return _stack_tups(out, stack_dim=self.tdim)
        return torch.stack(out, dim=self.tdim)
    
    def format_output(self, out, bs, seq_len):
        "unstack from batchsize outputs"
        if isinstance(out, tuple):
            return tuple(out_i.view(bs, seq_len, *out_i.shape[1:]) for out_i in out)
        return out.view(bs, seq_len,*out.shape[1:])
    
    def __repr__(self):
        return f'TimeDistributed({self.module})'

# %% ../nbs/01_layers.ipynb 158
from torch.jit import script

# %% ../nbs/01_layers.ipynb 159
@script
def _swish_jit_fwd(x): return x.mul(torch.sigmoid(x))

@script
def _swish_jit_bwd(x, grad_output):
    x_sigmoid = torch.sigmoid(x)
    return grad_output * (x_sigmoid * (1 + x * (1 - x_sigmoid)))

class _SwishJitAutoFn(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return _swish_jit_fwd(x)

    @staticmethod
    def backward(ctx, grad_output):
        x = ctx.saved_variables[0]
        return _swish_jit_bwd(x, grad_output)

# %% ../nbs/01_layers.ipynb 160
def swish(x, inplace=False): return _SwishJitAutoFn.apply(x)

# %% ../nbs/01_layers.ipynb 161
class Swish(Module):
    def forward(self, x): return _SwishJitAutoFn.apply(x)

# %% ../nbs/01_layers.ipynb 162
@script
def _mish_jit_fwd(x): return x.mul(torch.tanh(F.softplus(x)))

@script
def _mish_jit_bwd(x, grad_output):
    x_sigmoid = torch.sigmoid(x)
    x_tanh_sp = F.softplus(x).tanh()
    return grad_output.mul(x_tanh_sp + x * x_sigmoid * (1 - x_tanh_sp * x_tanh_sp))

class MishJitAutoFn(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x):
        ctx.save_for_backward(x)
        return _mish_jit_fwd(x)

    @staticmethod
    def backward(ctx, grad_output):
        x = ctx.saved_variables[0]
        return _mish_jit_bwd(x, grad_output)

# %% ../nbs/01_layers.ipynb 163
def mish(x): return F.mish(x) if torch.__version__ >= '1.9' else MishJitAutoFn.apply(x)

# %% ../nbs/01_layers.ipynb 164
class Mish(Module):
    def forward(self, x): return MishJitAutoFn.apply(x)

# %% ../nbs/01_layers.ipynb 165
if ismin_torch('1.9'): Mish = nn.Mish

# %% ../nbs/01_layers.ipynb 166
for o in swish,Swish,mish,Mish: o.__default_init__ = kaiming_uniform_

# %% ../nbs/01_layers.ipynb 169
class ParameterModule(Module):
    "Register a lone parameter `p` in a module."
    def __init__(self, p): self.val = p
    def forward(self, x): return x

# %% ../nbs/01_layers.ipynb 170
def children_and_parameters(m):
    "Return the children of `m` and its direct parameters not registered in modules."
    children = list(m.children())
    children_p = sum([[id(p) for p in c.parameters()] for c in m.children()],[])
    for p in m.parameters():
        if id(p) not in children_p: children.append(ParameterModule(p))
    return children

# %% ../nbs/01_layers.ipynb 172
def has_children(m):
    try: next(m.children())
    except StopIteration: return False
    return True

# %% ../nbs/01_layers.ipynb 174
def flatten_model(m):
    "Return the list of all submodules and parameters of `m`"
    return sum(map(flatten_model,children_and_parameters(m)),[]) if has_children(m) else [m]

# %% ../nbs/01_layers.ipynb 176
class NoneReduce():
    "A context manager to evaluate `loss_func` with none reduce."
    def __init__(self, loss_func): self.loss_func,self.old_red = loss_func,None

    def __enter__(self):
        if hasattr(self.loss_func, 'reduction'):
            self.old_red = self.loss_func.reduction
            self.loss_func.reduction = 'none'
            return self.loss_func
        else: return partial(self.loss_func, reduction='none')

    def __exit__(self, type, value, traceback):
        if self.old_red is not None: self.loss_func.reduction = self.old_red

# %% ../nbs/01_layers.ipynb 178
def in_channels(m):
    "Return the shape of the first weight layer in `m`."
    try: return next(l.weight.shape[1] for l in flatten_model(m) if nested_attr(l,'weight.ndim',-1)==4)
    except StopIteration as e: e.args = ["No weight layer"]; raise