Spaces:
Runtime error
Runtime error
File size: 29,917 Bytes
a983ebc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/13a_learner.ipynb.
# %% ../nbs/13a_learner.ipynb 2
from __future__ import annotations
from .data.all import *
from .optimizer import *
from .callback.core import *
import pickle,threading
from collections.abc import MutableSequence
# %% auto 0
__all__ = ['replacing_yield', 'mk_metric', 'save_model', 'load_model', 'SkipToEpoch', 'Learner', 'before_batch_cb',
'load_learner', 'Metric', 'AvgMetric', 'AvgLoss', 'AvgSmoothLoss', 'ValueMetric', 'Recorder', 'CastToTensor',
'CancelBackwardException', 'CancelStepException', 'CancelFitException', 'CancelEpochException',
'CancelTrainException', 'CancelValidException', 'CancelBatchException']
# %% ../nbs/13a_learner.ipynb 4
_all_ = ['CancelBackwardException', 'CancelStepException','CancelFitException','CancelEpochException',
'CancelTrainException','CancelValidException','CancelBatchException']
# %% ../nbs/13a_learner.ipynb 10
defaults.lr = 1e-3
# %% ../nbs/13a_learner.ipynb 11
def replacing_yield(o, attr, val):
"Context manager to temporarily replace an attribute"
old = getattr(o,attr)
try: yield setattr(o,attr,val)
finally: setattr(o,attr,old)
# %% ../nbs/13a_learner.ipynb 13
def mk_metric(m):
"Convert `m` to an `AvgMetric`, unless it's already a `Metric`"
if isinstance(m,type): m = m()
return m if isinstance(m, Metric) else AvgMetric(m)
# %% ../nbs/13a_learner.ipynb 15
def save_model(file, model, opt, with_opt=True, pickle_protocol=2, **torch_save_kwargs):
"Save `model` to `file` along with `opt` (if available, and if `with_opt`)"
if rank_distrib(): return # don't save if child proc
if opt is None: with_opt=False
state = get_model(model).state_dict()
if with_opt: state = {'model': state, 'opt':opt.state_dict()}
torch.save(state, file, pickle_protocol=pickle_protocol, **torch_save_kwargs)
# %% ../nbs/13a_learner.ipynb 17
def load_model(file, model, opt, with_opt=True, device=None, strict=True, **torch_load_kwargs):
"Load `model` from `file` along with `opt` (if available, and if `with_opt`)"
if isinstance(device, int): device = torch.device('cuda', device)
elif device is None: device = 'cpu'
state = torch.load(file, map_location=device, **torch_load_kwargs)
hasopt = set(state)=={'model', 'opt'}
model_state = state['model'] if hasopt else state
get_model(model).load_state_dict(model_state, strict=strict)
if hasopt and with_opt:
try: opt.load_state_dict(state['opt'])
except:
if with_opt: warn("Could not load the optimizer state.")
elif with_opt: warn("Saved filed doesn't contain an optimizer state.")
# %% ../nbs/13a_learner.ipynb 19
def _try_concat(o):
try: return torch.cat(o)
except: return sum([L(o_[i,:] for i in range_of(o_)) for o_ in o], L())
# %% ../nbs/13a_learner.ipynb 20
_before_epoch = [event.before_fit, event.before_epoch]
_after_epoch = [event.after_epoch, event.after_fit]
# %% ../nbs/13a_learner.ipynb 21
class _ConstantFunc():
"Returns a function that returns `o`"
def __init__(self, o): self.o = o
def __call__(self, *args, **kwargs): return self.o
# %% ../nbs/13a_learner.ipynb 22
class SkipToEpoch(Callback):
"Skip training up to `epoch`"
order = 70
def __init__(self, epoch:int):
self._skip_to = epoch
def before_epoch(self):
if self.epoch < self._skip_to:
raise CancelEpochException
# %% ../nbs/13a_learner.ipynb 24
_loop = ['Start Fit', 'before_fit', 'Start Epoch Loop', 'before_epoch', 'Start Train', 'before_train',
'Start Batch Loop', 'before_batch', 'after_pred', 'after_loss', 'before_backward', 'before_step',
'after_step', 'after_cancel_batch', 'after_batch','End Batch Loop','End Train',
'after_cancel_train', 'after_train', 'Start Valid', 'before_validate','Start Batch Loop',
'**CBs same as train batch**', 'End Batch Loop', 'End Valid', 'after_cancel_validate',
'after_validate', 'End Epoch Loop', 'after_cancel_epoch', 'after_epoch', 'End Fit',
'after_cancel_fit', 'after_fit']
# %% ../nbs/13a_learner.ipynb 25
class Learner(GetAttr):
_default='model'
def __init__(self,
dls:DataLoaders, # `DataLoaders` containing fastai or PyTorch `DataLoader`s
model:callable, # PyTorch model for training or inference
loss_func:callable|None=None, # Loss function. Defaults to `dls` loss
opt_func:Optimizer|OptimWrapper=Adam, # Optimization function for training
lr:float|slice=defaults.lr, # Default learning rate
splitter:callable=trainable_params, # Split model into parameter groups. Defaults to one parameter group
cbs:Callback|MutableSequence|None=None, # `Callback`s to add to `Learner`
metrics:callable|MutableSequence|None=None, # `Metric`s to calculate on validation set
path:str|Path|None=None, # Parent directory to save, load, and export models. Defaults to `dls` `path`
model_dir:str|Path='models', # Subdirectory to save and load models
wd:float|int|None=None, # Default weight decay
wd_bn_bias:bool=False, # Apply weight decay to normalization and bias parameters
train_bn:bool=True, # Train frozen normalization layers
moms:tuple=(0.95,0.85,0.95), # Default momentum for schedulers
default_cbs:bool=True # Include default `Callback`s
):
path = Path(path) if path is not None else getattr(dls, 'path', Path('.'))
if loss_func is None:
loss_func = getattr(dls.train_ds, 'loss_func', None)
assert loss_func is not None, "Could not infer loss function from the data, please pass a loss function."
self.dls,self.model = dls,model
store_attr(but='dls,model,cbs')
self.training,self.create_mbar,self.logger,self.opt,self.cbs = False,True,print,None,L()
if default_cbs: self.add_cbs(L(defaults.callbacks))
self.add_cbs(cbs)
self.lock = threading.Lock()
self("after_create")
@property
def metrics(self): return self._metrics
@metrics.setter
def metrics(self,v): self._metrics = L(v).map(mk_metric)
def _grab_cbs(self, cb_cls): return L(cb for cb in self.cbs if isinstance(cb, cb_cls))
def add_cbs(self, cbs):
L(cbs).map(self.add_cb)
return self
def remove_cbs(self, cbs):
L(cbs).map(self.remove_cb)
return self
def add_cb(self, cb):
if isinstance(cb, type): cb = cb()
cb.learn = self
setattr(self, cb.name, cb)
self.cbs.append(cb)
return self
def remove_cb(self, cb):
if isinstance(cb, type): self.remove_cbs(self._grab_cbs(cb))
else:
cb.learn = None
if hasattr(self, cb.name): delattr(self, cb.name)
if cb in self.cbs: self.cbs.remove(cb)
return self
@contextmanager
def added_cbs(self, cbs):
self.add_cbs(cbs)
try: yield
finally: self.remove_cbs(cbs)
@contextmanager
def removed_cbs(self, cbs):
self.remove_cbs(cbs)
try: yield self
finally: self.add_cbs(cbs)
def ordered_cbs(self, event): return [cb for cb in self.cbs.sorted('order') if hasattr(cb, event)]
def __call__(self, event_name): L(event_name).map(self._call_one)
def _call_one(self, event_name):
if not hasattr(event, event_name): raise Exception(f'missing {event_name}')
for cb in self.cbs.sorted('order'): cb(event_name)
def _bn_bias_state(self, with_bias): return norm_bias_params(self.model, with_bias).map(self.opt.state)
def create_opt(self):
if isinstance(self.opt_func, partial):
if 'lr' in self.opt_func.keywords:
self.lr = self.opt_func.keywords['lr']
if isinstance(self.opt_func, OptimWrapper):
self.opt = self.opt_func
self.opt.clear_state()
else:
self.opt = self.opt_func(self.splitter(self.model), lr=self.lr)
if not self.wd_bn_bias:
for p in self._bn_bias_state(True ): p['do_wd'] = False
if self.train_bn:
for p in self._bn_bias_state(False): p['force_train'] = True
def _split(self, b):
i = getattr(self.dls, 'n_inp', 1 if len(b)==1 else len(b)-1)
self.xb,self.yb = b[:i],b[i:]
def _with_events(self, f, event_type, ex, final=noop):
try: self(f'before_{event_type}'); f()
except ex: self(f'after_cancel_{event_type}')
self(f'after_{event_type}'); final()
def all_batches(self):
self.n_iter = len(self.dl)
for o in enumerate(self.dl): self.one_batch(*o)
def _backward(self): self.loss_grad.backward()
def _step(self): self.opt.step()
def _do_grad_opt(self):
self._with_events(self._backward, 'backward', CancelBackwardException)
self._with_events(self._step, 'step', CancelStepException)
self.opt.zero_grad()
def _do_one_batch(self):
self.pred = self.model(*self.xb)
self('after_pred')
if len(self.yb):
self.loss_grad = self.loss_func(self.pred, *self.yb)
self.loss = self.loss_grad.clone()
self('after_loss')
if not self.training or not len(self.yb): return
self._do_grad_opt()
def _set_device(self, b):
model_device = next(self.model.parameters()).device
dls_device = getattr(self.dls, 'device', default_device())
if model_device == dls_device: return to_device(b, dls_device)
else: return to_device(b, model_device)
def one_batch(self, i, b):
self.iter = i
b = self._set_device(b)
self._split(b)
self._with_events(self._do_one_batch, 'batch', CancelBatchException)
def _do_epoch_train(self):
self.dl = self.dls.train
self._with_events(self.all_batches, 'train', CancelTrainException)
def _do_epoch_validate(self, ds_idx=1, dl=None):
if dl is None: dl = self.dls[ds_idx]
self.dl = dl
with torch.no_grad(): self._with_events(self.all_batches, 'validate', CancelValidException)
def _do_epoch(self):
self._do_epoch_train()
self._do_epoch_validate()
def _do_fit(self):
for epoch in range(self.n_epoch):
self.epoch=epoch
self._with_events(self._do_epoch, 'epoch', CancelEpochException)
def fit(self, n_epoch, lr=None, wd=None, cbs=None, reset_opt=False, start_epoch=0):
if start_epoch != 0:
cbs = L(cbs) + SkipToEpoch(start_epoch)
with self.added_cbs(cbs):
if reset_opt or not self.opt: self.create_opt()
if wd is None: wd = self.wd
if wd is not None: self.opt.set_hypers(wd=wd)
self.opt.set_hypers(lr=self.lr if lr is None else lr)
self.n_epoch = n_epoch
self._with_events(self._do_fit, 'fit', CancelFitException, self._end_cleanup)
def _end_cleanup(self): self.dl,self.xb,self.yb,self.pred,self.loss = None,(None,),(None,),None,None
def __enter__(self): self(_before_epoch); return self
def __exit__(self, exc_type, exc_value, tb): self(_after_epoch)
def validation_context(self, cbs=None, inner=False):
cms = [self.no_logging(),self.no_mbar(), self.lock]
if cbs: cms.append(self.added_cbs(cbs))
if not inner: cms.append(self)
return ContextManagers(cms)
def validate(self, ds_idx=1, dl=None, cbs=None):
if dl is None: dl = self.dls[ds_idx]
with self.validation_context(cbs=cbs): self._do_epoch_validate(ds_idx, dl)
return getattr(self, 'final_record', None)
@delegates(GatherPredsCallback.__init__)
def get_preds(self,
ds_idx:int=1, # `DataLoader` to use for predictions if `dl` is None. 0: train. 1: valid
dl=None, # `DataLoader` to use for predictions, defaults to `ds_idx=1` if None
with_input:bool=False, # Return inputs with predictions
with_decoded:bool=False, # Return decoded predictions
with_loss:bool=False, # Return per item loss with predictions
act=None, # Apply activation to predictions, defaults to `self.loss_func`'s activation
inner:bool=False, # If False, create progress bar, show logger, use temporary `cbs`
reorder:bool=True, # Reorder predictions on dataset indicies, if applicable
cbs:Callback|MutableSequence|None=None, # Temporary `Callback`s to apply during prediction
**kwargs
)-> tuple:
if dl is None: dl = self.dls[ds_idx].new(shuffle=False, drop_last=False)
else:
try: len(dl)
except TypeError as e:
raise TypeError(f"`dl` is {type(dl)} and doesn't have len(dl)")
if isinstance(dl, DataLoader):
if dl.drop_last: dl = dl.new(shuffle=False, drop_last=False)
if reorder and hasattr(dl, 'get_idxs'):
idxs = dl.get_idxs()
dl = dl.new(get_idxs = _ConstantFunc(idxs))
cb = GatherPredsCallback(with_input=with_input, with_loss=with_loss, **kwargs)
ctx_mgrs = self.validation_context(cbs=L(cbs)+[cb], inner=inner)
if with_loss: ctx_mgrs.append(self.loss_not_reduced())
with ContextManagers(ctx_mgrs):
self._do_epoch_validate(dl=dl)
if act is None: act = getcallable(self.loss_func, 'activation')
res = cb.all_tensors()
pred_i = 1 if with_input else 0
if res[pred_i] is not None:
res[pred_i] = act(res[pred_i])
if with_decoded: res.insert(pred_i+2, getcallable(self.loss_func, 'decodes')(res[pred_i]))
if reorder and hasattr(dl, 'get_idxs'): res = nested_reorder(res, tensor(idxs).argsort())
return tuple(res)
self._end_cleanup()
def predict(self, item, rm_type_tfms=None, with_input=False):
dl = self.dls.test_dl([item], rm_type_tfms=rm_type_tfms, num_workers=0)
inp,preds,_,dec_preds = self.get_preds(dl=dl, with_input=True, with_decoded=True)
i = getattr(self.dls, 'n_inp', -1)
inp = (inp,) if i==1 else tuplify(inp)
dec = self.dls.decode_batch(inp + tuplify(dec_preds))[0]
dec_inp,dec_targ = map(detuplify, [dec[:i],dec[i:]])
res = dec_targ,dec_preds[0],preds[0]
if with_input: res = (dec_inp,) + res
return res
def show_results(self, ds_idx=1, dl=None, max_n=9, shuffle=True, **kwargs):
if dl is None: dl = self.dls[ds_idx].new(shuffle=shuffle)
b = dl.one_batch()
_,_,preds = self.get_preds(dl=[b], with_decoded=True)
dl.show_results(b, preds, max_n=max_n, **kwargs)
def show_training_loop(self):
indent = 0
for s in _loop:
if s.startswith('Start'): print(f'{" "*indent}{s}'); indent += 2
elif s.startswith('End'): indent -= 2; print(f'{" "*indent}{s}')
else: print(f'{" "*indent} - {s:15}:', self.ordered_cbs(s))
@contextmanager
def no_logging(self): return replacing_yield(self, 'logger', noop)
@contextmanager
def no_mbar(self): return replacing_yield(self, 'create_mbar', False)
@contextmanager
def loss_not_reduced(self):
if hasattr(self.loss_func, 'reduction'): return replacing_yield(self.loss_func, 'reduction', 'none')
else: return replacing_yield(self, 'loss_func', partial(self.loss_func, reduction='none'))
def to_detach(self,b,cpu=True,gather=True):
return self.dl.to_detach(b,cpu,gather) if hasattr(getattr(self,'dl',None),'to_detach') else to_detach(b,cpu,gather)
def __getstate__(self): return {k:v for k,v in self.__dict__.items() if k!='lock'}
def __setstate__(self, state):
self.__dict__.update(state)
self.lock = threading.Lock()
Learner.x,Learner.y = add_props(lambda i,x: detuplify((x.xb,x.yb)[i]))
# %% ../nbs/13a_learner.ipynb 26
add_docs(Learner, "Group together a `model`, some `dls` and a `loss_func` to handle training",
add_cbs="Add `cbs` to the list of `Callback` and register `self` as their learner",
add_cb="Add `cb` to the list of `Callback` and register `self` as their learner",
remove_cbs="Remove `cbs` from the list of `Callback` and deregister `self` as their learner",
remove_cb="Add `cb` from the list of `Callback` and deregister `self` as their learner",
added_cbs="Context manage that temporarily adds `cbs`",
removed_cbs="Context manage that temporarily removes `cbs`",
ordered_cbs="List of `Callback`s, in order, for an `event` in the training loop",
create_opt="Create an optimizer with default hyper-parameters",
one_batch="Train or evaluate `self.model` on batch `(xb,yb)`",
all_batches="Train or evaluate `self.model` on all the batches of `self.dl`",
fit="Fit `self.model` for `n_epoch` using `cbs`. Optionally `reset_opt`.",
validate="Validate on `dl` with potential new `cbs`.",
get_preds="Get the predictions and targets on the `ds_idx`-th dbunchset or `dl`, optionally `with_input` and `with_loss`",
predict="Prediction on `item`, fully decoded, loss function decoded and probabilities",
validation_context="A `ContextManagers` suitable for validation, with optional `cbs`",
show_results="Show some predictions on `ds_idx`-th dataset or `dl`",
show_training_loop="Show each step in the training loop",
no_logging="Context manager to temporarily remove `logger`",
no_mbar="Context manager to temporarily prevent the master progress bar from being created",
loss_not_reduced="A context manager to evaluate `loss_func` with reduction set to none.",
to_detach="Calls `to_detach` if `self.dl` provides a `.to_detach` function otherwise calls global `to_detach`",
__call__="Call `event_name` for all `Callback`s in `self.cbs`"
)
# %% ../nbs/13a_learner.ipynb 33
if not hasattr(defaults, 'callbacks'): defaults.callbacks = [TrainEvalCallback]
# %% ../nbs/13a_learner.ipynb 88
def _before_batch_cb(f, self):
xb,yb = f(self, self.xb, self.yb)
self.learn.xb,self.learn.yb = xb,yb
# %% ../nbs/13a_learner.ipynb 89
def before_batch_cb(f):
"Shortcut for creating a Callback on the `before_batch` event, which takes and returns `xb,yb`"
return Callback(before_batch=partial(_before_batch_cb, f))
# %% ../nbs/13a_learner.ipynb 96
@patch
@delegates(save_model)
def save(self:Learner, file, **kwargs):
"Save model and optimizer state (if `with_opt`) to `self.path/self.model_dir/file`"
file = join_path_file(file, self.path/self.model_dir, ext='.pth')
save_model(file, self.model, getattr(self,'opt',None), **kwargs)
return file
# %% ../nbs/13a_learner.ipynb 98
@patch
@delegates(load_model)
def load(self:Learner, file, device=None, **kwargs):
"Load model and optimizer state (if `with_opt`) from `self.path/self.model_dir/file` using `device`"
if device is None and hasattr(self.dls, 'device'): device = self.dls.device
if self.opt is None: self.create_opt()
file = join_path_file(file, self.path/self.model_dir, ext='.pth')
distrib_barrier()
load_model(file, self.model, self.opt, device=device, **kwargs)
return self
# %% ../nbs/13a_learner.ipynb 102
@patch
def export(self:Learner, fname='export.pkl', pickle_module=pickle, pickle_protocol=2):
"Export the content of `self` without the items and the optimizer state for inference"
if rank_distrib(): return # don't export if child proc
self._end_cleanup()
old_dbunch = self.dls
self.dls = self.dls.new_empty()
state = self.opt.state_dict() if self.opt is not None else None
self.opt = None
with warnings.catch_warnings():
#To avoid the warning that come from PyTorch about model not being checked
warnings.simplefilter("ignore")
torch.save(self, self.path/fname, pickle_module=pickle_module, pickle_protocol=pickle_protocol)
self.create_opt()
if state is not None: self.opt.load_state_dict(state)
self.dls = old_dbunch
# %% ../nbs/13a_learner.ipynb 104
def load_learner(fname, cpu=True, pickle_module=pickle):
"Load a `Learner` object in `fname`, by default putting it on the `cpu`"
distrib_barrier()
map_loc = 'cpu' if cpu else default_device()
try: res = torch.load(fname, map_location=map_loc, pickle_module=pickle_module)
except AttributeError as e:
e.args = [f"Custom classes or functions exported with your `Learner` not available in namespace.\Re-declare/import before loading:\n\t{e.args[0]}"]
raise
if cpu:
res.dls.cpu()
if hasattr(res, 'channels_last'): res = res.to_contiguous(to_fp32=True)
elif hasattr(res, 'mixed_precision'): res = res.to_fp32()
elif hasattr(res, 'non_native_mixed_precision'): res = res.to_non_native_fp32()
return res
# %% ../nbs/13a_learner.ipynb 111
@docs
class Metric():
"Blueprint for defining a metric"
def reset(self): pass
def accumulate(self, learn): pass
@property
def value(self): raise NotImplementedError
@property
def name(self): return class2attr(self, 'Metric')
_docs = dict(
reset="Reset inner state to prepare for new computation",
name="Name of the `Metric`, camel-cased and with Metric removed",
accumulate="Use `learn` to update the state with new results",
value="The value of the metric")
# %% ../nbs/13a_learner.ipynb 118
class AvgMetric(Metric):
"Average the values of `func` taking into account potential different batch sizes"
def __init__(self, func): self.func = func
def reset(self): self.total,self.count = 0.,0
def accumulate(self, learn):
bs = find_bs(learn.yb)
self.total += learn.to_detach(self.func(learn.pred, *learn.yb))*bs
self.count += bs
@property
def value(self): return self.total/self.count if self.count != 0 else None
@property
def name(self): return self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__
# %% ../nbs/13a_learner.ipynb 122
class AvgLoss(Metric):
"Average the losses taking into account potential different batch sizes"
def reset(self): self.total,self.count = 0.,0
def accumulate(self, learn):
bs = find_bs(learn.yb)
self.total += learn.to_detach(learn.loss.mean())*bs
self.count += bs
@property
def value(self): return self.total/self.count if self.count != 0 else None
@property
def name(self): return "loss"
# %% ../nbs/13a_learner.ipynb 126
class AvgSmoothLoss(Metric):
"Smooth average of the losses (exponentially weighted with `beta`)"
def __init__(self, beta=0.98): self.beta = beta
def reset(self): self.count,self.val = 0,tensor(0.)
def accumulate(self, learn):
self.count += 1
self.val = torch.lerp(to_detach(learn.loss.mean()), self.val, self.beta)
@property
def value(self): return self.val/(1-self.beta**self.count)
# %% ../nbs/13a_learner.ipynb 129
class ValueMetric(Metric):
"Use to include a pre-calculated metric value (for instance calculated in a `Callback`) and returned by `func`"
def __init__(self, func, metric_name=None): store_attr('func, metric_name')
@property
def value(self): return self.func()
@property
def name(self): return self.metric_name if self.metric_name else self.func.__name__
# %% ../nbs/13a_learner.ipynb 133
from fastprogress.fastprogress import format_time
# %% ../nbs/13a_learner.ipynb 134
def _maybe_item(t):
t = t.value
try: return t.item()
except: return t
# %% ../nbs/13a_learner.ipynb 135
class Recorder(Callback):
"Callback that registers statistics (lr, loss and metrics) during training"
_stateattrs=('lrs','iters','losses','values')
remove_on_fetch,order = True,50
def __init__(self, add_time=True, train_metrics=False, valid_metrics=True, beta=0.98):
store_attr('add_time,train_metrics,valid_metrics')
self.loss,self.smooth_loss = AvgLoss(),AvgSmoothLoss(beta=beta)
def before_fit(self):
"Prepare state for training"
self.lrs,self.iters,self.losses,self.values = [],[],[],[]
names = self.metrics.attrgot('name')
if self.train_metrics and self.valid_metrics:
names = L('loss') + names
names = names.map('train_{}') + names.map('valid_{}')
elif self.valid_metrics: names = L('train_loss', 'valid_loss') + names
else: names = L('train_loss') + names
if self.add_time: names.append('time')
self.metric_names = 'epoch'+names
self.smooth_loss.reset()
def after_batch(self):
"Update all metrics and records lr and smooth loss in training"
if len(self.yb) == 0: return
mets = self._train_mets if self.training else self._valid_mets
for met in mets: met.accumulate(self.learn)
if not self.training: return
self.lrs.append(self.opt.hypers[-1]['lr'])
self.losses.append(self.smooth_loss.value)
self.learn.smooth_loss = self.smooth_loss.value
def before_epoch(self):
"Set timer if `self.add_time=True`"
self.cancel_train,self.cancel_valid = False,False
if self.add_time: self.start_epoch = time.time()
self.log = L(getattr(self, 'epoch', 0))
def before_train (self): self._train_mets[1:].map(Self.reset())
def before_validate(self): self._valid_mets.map(Self.reset())
def after_train (self): self.log += self._train_mets.map(_maybe_item)
def after_validate(self): self.log += self._valid_mets.map(_maybe_item)
def after_cancel_train(self): self.cancel_train = True
def after_cancel_validate(self): self.cancel_valid = True
def after_epoch(self):
"Store and log the loss/metric values"
self.learn.final_record = self.log[1:].copy()
self.values.append(self.learn.final_record)
if self.add_time: self.log.append(format_time(time.time() - self.start_epoch))
self.logger(self.log)
self.iters.append(self.smooth_loss.count)
@property
def _train_mets(self):
if getattr(self, 'cancel_train', False): return L()
return L(self.smooth_loss) + (self.metrics if self.train_metrics else L())
@property
def _valid_mets(self):
if getattr(self, 'cancel_valid', False): return L()
return (L(self.loss) + self.metrics if self.valid_metrics else L())
def plot_loss(self, skip_start=5, with_valid=True):
plt.plot(list(range(skip_start, len(self.losses))), self.losses[skip_start:], label='train')
if with_valid:
idx = (np.array(self.iters)<skip_start).sum()
valid_col = self.metric_names.index('valid_loss') - 1
plt.plot(self.iters[idx:], L(self.values[idx:]).itemgot(valid_col), label='valid')
plt.legend()
# %% ../nbs/13a_learner.ipynb 136
add_docs(Recorder,
before_train = "Reset loss and metrics state",
after_train = "Log loss and metric values on the training set (if `self.training_metrics=True`)",
before_validate = "Reset loss and metrics state",
after_validate = "Log loss and metric values on the validation set",
after_cancel_train = "Ignore training metrics for this epoch",
after_cancel_validate = "Ignore validation metrics for this epoch",
plot_loss = "Plot the losses from `skip_start` and onward")
if Recorder not in defaults.callbacks: defaults.callbacks.append(Recorder)
# %% ../nbs/13a_learner.ipynb 152
def _cast_tensor(x):
if isinstance(x, tuple): return tuple(_cast_tensor(x_) for x_ in x)
else: return cast(x, Tensor) if isinstance(x,torch.Tensor) else x
# %% ../nbs/13a_learner.ipynb 153
class CastToTensor(Callback):
"Cast Subclassed Tensors to `Tensor`"
order=9 # Right before MixedPrecision
def before_batch(self):
self.learn.xb,self.learn.yb = _cast_tensor(self.learn.xb),_cast_tensor(self.learn.yb)
# %% ../nbs/13a_learner.ipynb 155
if CastToTensor not in defaults.callbacks: defaults.callbacks.append(CastToTensor)
# %% ../nbs/13a_learner.ipynb 185
@patch
def freeze_to(self:Learner, n):
if self.opt is None: self.create_opt()
self.opt.freeze_to(n)
self.opt.clear_state()
@patch
def freeze(self:Learner): self.freeze_to(-1)
@patch
def unfreeze(self:Learner): self.freeze_to(0)
add_docs(Learner,
freeze_to="Freeze parameter groups up to `n`",
freeze="Freeze up to last parameter group",
unfreeze="Unfreeze the entire model")
# %% ../nbs/13a_learner.ipynb 189
@patch
def tta(self:Learner, ds_idx=1, dl=None, n=4, item_tfms=None, batch_tfms=None, beta=0.25, use_max=False):
"Return predictions on the `ds_idx` dataset or `dl` using Test Time Augmentation"
if dl is None: dl = self.dls[ds_idx].new(shuffled=False, drop_last=False)
if item_tfms is not None or batch_tfms is not None: dl = dl.new(after_item=item_tfms, after_batch=batch_tfms)
try:
self(_before_epoch)
with dl.dataset.set_split_idx(0), self.no_mbar():
if hasattr(self,'progress'): self.progress.mbar = master_bar(list(range(n)))
aug_preds = []
for i in self.progress.mbar if hasattr(self,'progress') else range(n):
self.epoch = i #To keep track of progress on mbar since the progress callback will use self.epoch
aug_preds.append(self.get_preds(dl=dl, inner=True)[0][None])
aug_preds = torch.cat(aug_preds)
aug_preds = aug_preds.max(0)[0] if use_max else aug_preds.mean(0)
self.epoch = n
with dl.dataset.set_split_idx(1): preds,targs = self.get_preds(dl=dl, inner=True)
finally: self(event.after_fit)
if use_max: return torch.stack([preds, aug_preds], 0).max(0)[0],targs
preds = (aug_preds,preds) if beta is None else torch.lerp(aug_preds, preds, beta)
return preds,targs
|