Spaces:
Runtime error
Runtime error
# AUTOGENERATED! DO NOT EDIT! File to edit: ../nbs/20_interpret.ipynb. | |
# %% ../nbs/20_interpret.ipynb 2 | |
from __future__ import annotations | |
from .data.all import * | |
from .optimizer import * | |
from .learner import * | |
from .tabular.core import * | |
import sklearn.metrics as skm | |
# %% auto 0 | |
__all__ = ['plot_top_losses', 'Interpretation', 'ClassificationInterpretation', 'SegmentationInterpretation'] | |
# %% ../nbs/20_interpret.ipynb 7 | |
def plot_top_losses(x, y, *args, **kwargs): | |
raise Exception(f"plot_top_losses is not implemented for {type(x)},{type(y)}") | |
# %% ../nbs/20_interpret.ipynb 8 | |
_all_ = ["plot_top_losses"] | |
# %% ../nbs/20_interpret.ipynb 9 | |
class Interpretation(): | |
"Interpretation base class, can be inherited for task specific Interpretation classes" | |
def __init__(self, | |
learn:Learner, | |
dl:DataLoader, # `DataLoader` to run inference over | |
losses:TensorBase, # Losses calculated from `dl` | |
act=None # Activation function for prediction | |
): | |
store_attr() | |
def __getitem__(self, idxs): | |
"Return inputs, preds, targs, decoded outputs, and losses at `idxs`" | |
if isinstance(idxs, Tensor): idxs = idxs.tolist() | |
if not is_listy(idxs): idxs = [idxs] | |
items = getattr(self.dl.items, 'iloc', L(self.dl.items))[idxs] | |
tmp_dl = self.learn.dls.test_dl(items, with_labels=True, process=not isinstance(self.dl, TabDataLoader)) | |
inps,preds,targs,decoded = self.learn.get_preds(dl=tmp_dl, with_input=True, with_loss=False, | |
with_decoded=True, act=self.act, reorder=False) | |
return inps, preds, targs, decoded, self.losses[idxs] | |
def from_learner(cls, | |
learn, # Model used to create interpretation | |
ds_idx:int=1, # Index of `learn.dls` when `dl` is None | |
dl:DataLoader=None, # `Dataloader` used to make predictions | |
act=None # Override default or set prediction activation function | |
): | |
"Construct interpretation object from a learner" | |
if dl is None: dl = learn.dls[ds_idx].new(shuffle=False, drop_last=False) | |
_,_,losses = learn.get_preds(dl=dl, with_input=False, with_loss=True, with_decoded=False, | |
with_preds=False, with_targs=False, act=act) | |
return cls(learn, dl, losses, act) | |
def top_losses(self, | |
k:int|None=None, # Return `k` losses, defaults to all | |
largest:bool=True, # Sort losses by largest or smallest | |
items:bool=False # Whether to return input items | |
): | |
"`k` largest(/smallest) losses and indexes, defaulting to all losses." | |
losses, idx = self.losses.topk(ifnone(k, len(self.losses)), largest=largest) | |
if items: return losses, idx, getattr(self.dl.items, 'iloc', L(self.dl.items))[idx] | |
else: return losses, idx | |
def plot_top_losses(self, | |
k:int|MutableSequence, # Number of losses to plot | |
largest:bool=True, # Sort losses by largest or smallest | |
**kwargs | |
): | |
"Show `k` largest(/smallest) preds and losses. Implementation based on type dispatch" | |
if is_listy(k) or isinstance(k, range): | |
losses, idx = (o[k] for o in self.top_losses(None, largest)) | |
else: | |
losses, idx = self.top_losses(k, largest) | |
inps, preds, targs, decoded, _ = self[idx] | |
inps, targs, decoded = tuplify(inps), tuplify(targs), tuplify(decoded) | |
x, y, its = self.dl._pre_show_batch(inps+targs, max_n=len(idx)) | |
x1, y1, outs = self.dl._pre_show_batch(inps+decoded, max_n=len(idx)) | |
if its is not None: | |
plot_top_losses(x, y, its, outs.itemgot(slice(len(inps), None)), preds, losses, **kwargs) | |
#TODO: figure out if this is needed | |
#its None means that a batch knows how to show itself as a whole, so we pass x, x1 | |
#else: show_results(x, x1, its, ctxs=ctxs, max_n=max_n, **kwargs) | |
def show_results(self, | |
idxs:list, # Indices of predictions and targets | |
**kwargs | |
): | |
"Show predictions and targets of `idxs`" | |
if isinstance(idxs, Tensor): idxs = idxs.tolist() | |
if not is_listy(idxs): idxs = [idxs] | |
inps, _, targs, decoded, _ = self[idxs] | |
b = tuplify(inps)+tuplify(targs) | |
self.dl.show_results(b, tuplify(decoded), max_n=len(idxs), **kwargs) | |
# %% ../nbs/20_interpret.ipynb 22 | |
class ClassificationInterpretation(Interpretation): | |
"Interpretation methods for classification models." | |
def __init__(self, | |
learn:Learner, | |
dl:DataLoader, # `DataLoader` to run inference over | |
losses:TensorBase, # Losses calculated from `dl` | |
act=None # Activation function for prediction | |
): | |
super().__init__(learn, dl, losses, act) | |
self.vocab = self.dl.vocab | |
if is_listy(self.vocab): self.vocab = self.vocab[-1] | |
def confusion_matrix(self): | |
"Confusion matrix as an `np.ndarray`." | |
x = torch.arange(0, len(self.vocab)) | |
_,targs,decoded = self.learn.get_preds(dl=self.dl, with_decoded=True, with_preds=True, | |
with_targs=True, act=self.act) | |
d,t = flatten_check(decoded, targs) | |
cm = ((d==x[:,None]) & (t==x[:,None,None])).long().sum(2) | |
return to_np(cm) | |
def plot_confusion_matrix(self, | |
normalize:bool=False, # Whether to normalize occurrences | |
title:str='Confusion matrix', # Title of plot | |
cmap:str="Blues", # Colormap from matplotlib | |
norm_dec:int=2, # Decimal places for normalized occurrences | |
plot_txt:bool=True, # Display occurrence in matrix | |
**kwargs | |
): | |
"Plot the confusion matrix, with `title` and using `cmap`." | |
# This function is mainly copied from the sklearn docs | |
cm = self.confusion_matrix() | |
if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] | |
fig = plt.figure(**kwargs) | |
plt.imshow(cm, interpolation='nearest', cmap=cmap) | |
plt.title(title) | |
tick_marks = np.arange(len(self.vocab)) | |
plt.xticks(tick_marks, self.vocab, rotation=90) | |
plt.yticks(tick_marks, self.vocab, rotation=0) | |
if plot_txt: | |
thresh = cm.max() / 2. | |
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): | |
coeff = f'{cm[i, j]:.{norm_dec}f}' if normalize else f'{cm[i, j]}' | |
plt.text(j, i, coeff, horizontalalignment="center", verticalalignment="center", color="white" | |
if cm[i, j] > thresh else "black") | |
ax = fig.gca() | |
ax.set_ylim(len(self.vocab)-.5,-.5) | |
plt.tight_layout() | |
plt.ylabel('Actual') | |
plt.xlabel('Predicted') | |
plt.grid(False) | |
def most_confused(self, min_val=1): | |
"Sorted descending largest non-diagonal entries of confusion matrix (actual, predicted, # occurrences" | |
cm = self.confusion_matrix() | |
np.fill_diagonal(cm, 0) | |
res = [(self.vocab[i],self.vocab[j],cm[i,j]) for i,j in zip(*np.where(cm>=min_val))] | |
return sorted(res, key=itemgetter(2), reverse=True) | |
def print_classification_report(self): | |
"Print scikit-learn classification report" | |
_,targs,decoded = self.learn.get_preds(dl=self.dl, with_decoded=True, with_preds=True, | |
with_targs=True, act=self.act) | |
d,t = flatten_check(decoded, targs) | |
names = [str(v) for v in self.vocab] | |
print(skm.classification_report(t, d, labels=list(self.vocab.o2i.values()), target_names=names)) | |
# %% ../nbs/20_interpret.ipynb 27 | |
class SegmentationInterpretation(Interpretation): | |
"Interpretation methods for segmentation models." | |
pass | |