Spaces:
Sleeping
Sleeping
Samuel-DD07
commited on
Commit
·
3104437
1
Parent(s):
e0724f2
Ajouter la prise en charge des fichiers PDF et PyPDF2
Browse files- .gitignore +1 -0
- app.py +52 -57
- modeles.py +2 -51
- requirements.txt +2 -1
- uploadFile.py +11 -13
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__
|
app.py
CHANGED
@@ -4,16 +4,21 @@ from fastapi import FastAPI, UploadFile
|
|
4 |
from typing import Union
|
5 |
import json
|
6 |
import csv
|
7 |
-
from modeles import bert, squeezebert, deberta
|
8 |
from uploadFile import file_to_text
|
9 |
from typing import List
|
10 |
from transformers import pipeline
|
11 |
from pydantic import BaseModel
|
12 |
-
|
13 |
-
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
app.add_middleware(
|
18 |
CORSMiddleware,
|
19 |
allow_origins=["*"],
|
@@ -22,53 +27,58 @@ app.add_middleware(
|
|
22 |
allow_headers=["*"],
|
23 |
)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
class BERTRequest(BaseModel):
|
30 |
-
context: str
|
31 |
-
question: str
|
32 |
-
|
33 |
-
class DeBERTaRequest(BaseModel):
|
34 |
-
context: str
|
35 |
-
question: str
|
36 |
-
|
37 |
-
pipBert = pipeline('question-answering', model="ALOQAS/bert-large-uncased-finetuned-squad-v2", tokenizer="ALOQAS/bert-large-uncased-finetuned-squad-v2")
|
38 |
-
pipDeberta = pipeline('question-answering', model="ALOQAS/deberta-large-finetuned-squad-v2", tokenizer="ALOQAS/deberta-large-finetuned-squad-v2")
|
39 |
-
tokenizer, model = loadSqueeze()
|
40 |
|
41 |
@app.get("/")
|
42 |
async def root():
|
43 |
return {"message": "Hello World"}
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
@app.post("/uploadfile/")
|
47 |
-
async def create_upload_file(files: List[UploadFile], question: str, model: str):
|
48 |
-
res =
|
49 |
for file in files:
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
@app.post("/squeezebert/")
|
69 |
-
async def qasqueezebert(request:
|
70 |
try:
|
71 |
-
squeezebert_answer = squeezebert(request.context, request.question,
|
72 |
if squeezebert_answer:
|
73 |
return squeezebert_answer
|
74 |
else:
|
@@ -77,7 +87,7 @@ async def qasqueezebert(request: SqueezeBERTRequest):
|
|
77 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
78 |
|
79 |
@app.post("/bert/")
|
80 |
-
async def qabert(request:
|
81 |
try:
|
82 |
bert_answer = bert(request.context, request.question, pipBert)
|
83 |
if bert_answer:
|
@@ -87,8 +97,8 @@ async def qabert(request: BERTRequest):
|
|
87 |
except Exception as e:
|
88 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
89 |
|
90 |
-
@app.post("/deberta
|
91 |
-
async def qadeberta(request:
|
92 |
try:
|
93 |
deberta_answer = deberta(request.context, request.question, pipDeberta)
|
94 |
if deberta_answer:
|
@@ -97,18 +107,3 @@ async def qadeberta(request: DeBERTaRequest):
|
|
97 |
raise HTTPException(status_code=404, detail="No answer found")
|
98 |
except Exception as e:
|
99 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
100 |
-
|
101 |
-
def extract_data(file: UploadFile) -> Union[str, dict, list]:
|
102 |
-
if file.filename.endswith(".txt"):
|
103 |
-
data = file.file.read()
|
104 |
-
return data.decode("utf-8")
|
105 |
-
elif file.filename.endswith(".csv"):
|
106 |
-
data = file.file.read().decode("utf-8")
|
107 |
-
rows = data.split("\n")
|
108 |
-
reader = csv.DictReader(rows)
|
109 |
-
return [dict(row) for row in reader]
|
110 |
-
elif file.filename.endswith(".json"):
|
111 |
-
data = file.file.read().decode("utf-8")
|
112 |
-
return json.loads(data)
|
113 |
-
else:
|
114 |
-
return "Invalid file format"
|
|
|
4 |
from typing import Union
|
5 |
import json
|
6 |
import csv
|
7 |
+
from modeles import bert, squeezebert, deberta
|
8 |
from uploadFile import file_to_text
|
9 |
from typing import List
|
10 |
from transformers import pipeline
|
11 |
from pydantic import BaseModel
|
12 |
+
from typing import Optional
|
|
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
16 |
+
class Request(BaseModel):
|
17 |
+
context: str
|
18 |
+
question: str
|
19 |
+
model: Optional[str] = None
|
20 |
+
# files: Optional[List[UploadFile]] = None
|
21 |
+
|
22 |
app.add_middleware(
|
23 |
CORSMiddleware,
|
24 |
allow_origins=["*"],
|
|
|
27 |
allow_headers=["*"],
|
28 |
)
|
29 |
|
30 |
+
pipSqueezeBert = pipeline("question-answering", model="ALOQAS/squeezebert-uncased-finetuned-squad-v2")
|
31 |
+
pipBert = pipeline('question-answering', model="ALOQAS/bert-large-uncased-finetuned-squad-v2")
|
32 |
+
pipDeberta = pipeline('question-answering', model="ALOQAS/deberta-large-finetuned-squad-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
@app.get("/")
|
35 |
async def root():
|
36 |
return {"message": "Hello World"}
|
37 |
|
38 |
+
@app.post("/contextText/")
|
39 |
+
async def create_upload_file(request: Request):
|
40 |
+
try:
|
41 |
+
if request.model == "squeezebert":
|
42 |
+
answer = squeezebert(request.context, request.question, pipSqueezeBert)
|
43 |
+
elif request.model == "bert":
|
44 |
+
answer = bert(request.context, request.question, pipBert)
|
45 |
+
elif request.model == "deberta":
|
46 |
+
answer = deberta(request.context, request.question, pipDeberta)
|
47 |
+
else:
|
48 |
+
raise HTTPException(status_code=400, detail="Model not found.")
|
49 |
+
return answer
|
50 |
+
except Exception as e:
|
51 |
+
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
52 |
|
53 |
@app.post("/uploadfile/")
|
54 |
+
async def create_upload_file(files: List[UploadFile] = File(...), question: str = Form(...), model: str = Form(...)):
|
55 |
+
res = ""
|
56 |
for file in files:
|
57 |
+
try:
|
58 |
+
res += await file_to_text(file)
|
59 |
+
except Exception as e:
|
60 |
+
print(f"Failed to process file {file.filename}: {e}")
|
61 |
+
continue
|
62 |
+
|
63 |
+
if res == "":
|
64 |
+
raise HTTPException(status_code=400, detail="All files failed to process.")
|
65 |
+
|
66 |
+
answer = None
|
67 |
+
if model == "squeezebert":
|
68 |
+
answer = squeezebert(res, question, pipSqueezeBert)
|
69 |
+
elif model == "bert":
|
70 |
+
answer = bert(res, question, pipBert)
|
71 |
+
elif model == "deberta":
|
72 |
+
answer = deberta(res, question, pipDeberta)
|
73 |
+
else:
|
74 |
+
raise HTTPException(status_code=400, detail="Model not found.")
|
75 |
+
|
76 |
+
return answer
|
77 |
|
78 |
@app.post("/squeezebert/")
|
79 |
+
async def qasqueezebert(request: Request):
|
80 |
try:
|
81 |
+
squeezebert_answer = squeezebert(request.context, request.question, pipSqueezeBert)
|
82 |
if squeezebert_answer:
|
83 |
return squeezebert_answer
|
84 |
else:
|
|
|
87 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
88 |
|
89 |
@app.post("/bert/")
|
90 |
+
async def qabert(request: Request):
|
91 |
try:
|
92 |
bert_answer = bert(request.context, request.question, pipBert)
|
93 |
if bert_answer:
|
|
|
97 |
except Exception as e:
|
98 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
99 |
|
100 |
+
@app.post("/deberta/")
|
101 |
+
async def qadeberta(request: Request):
|
102 |
try:
|
103 |
deberta_answer = deberta(request.context, request.question, pipDeberta)
|
104 |
if deberta_answer:
|
|
|
107 |
raise HTTPException(status_code=404, detail="No answer found")
|
108 |
except Exception as e:
|
109 |
raise HTTPException(status_code=500, detail=f"An error occurred: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modeles.py
CHANGED
@@ -1,54 +1,5 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
def loadSqueeze():
|
5 |
-
tokenizer = AutoTokenizer.from_pretrained("ALOQAS/squeezebert-uncased-finetuned-squad-v2")
|
6 |
-
model = AutoModelForQuestionAnswering.from_pretrained("ALOQAS/squeezebert-uncased-finetuned-squad-v2")
|
7 |
-
return tokenizer, model
|
8 |
-
|
9 |
-
def squeezebert(context, question, model, tokenizer):
|
10 |
-
# Tokenize the input question-context pair
|
11 |
-
inputs = tokenizer.encode_plus(question, context, max_length=512, truncation=True, padding=True, return_tensors='pt')
|
12 |
-
|
13 |
-
# Send inputs to the same device as your model
|
14 |
-
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
15 |
-
|
16 |
-
with torch.no_grad():
|
17 |
-
# Forward pass, get model outputs
|
18 |
-
outputs = model(**inputs)
|
19 |
-
|
20 |
-
# Extract the start and end positions of the answer in the tokens
|
21 |
-
answer_start_scores, answer_end_scores = outputs.start_logits, outputs.end_logits
|
22 |
-
|
23 |
-
# Calculate probabilities from logits
|
24 |
-
answer_start_prob = torch.softmax(answer_start_scores, dim=-1)
|
25 |
-
answer_end_prob = torch.softmax(answer_end_scores, dim=-1)
|
26 |
-
|
27 |
-
# Find the most likely start and end positions
|
28 |
-
answer_start_index = torch.argmax(answer_start_prob) # Most likely start of answer
|
29 |
-
answer_end_index = torch.argmax(answer_end_prob) + 1 # Most likely end of answer; +1 for inclusive slicing
|
30 |
-
|
31 |
-
# Extract the highest probability scores
|
32 |
-
start_score = answer_start_prob.max().item() # Highest probability of start
|
33 |
-
end_score = answer_end_prob.max().item() # Highest probability of end
|
34 |
-
|
35 |
-
# Combine the scores into a singular score
|
36 |
-
combined_score = (start_score * end_score) ** 0.5 # Geometric mean of start and end scores
|
37 |
-
|
38 |
-
# Convert token indices to the actual answer text
|
39 |
-
answer_tokens = inputs['input_ids'][0, answer_start_index:answer_end_index]
|
40 |
-
answer = tokenizer.decode(answer_tokens, skip_special_tokens=True)
|
41 |
-
|
42 |
-
# Return the answer, its positions, and the combined score
|
43 |
-
return {
|
44 |
-
"answer": answer,
|
45 |
-
"start": answer_start_index.item(),
|
46 |
-
"end": answer_end_index.item(),
|
47 |
-
"score": combined_score
|
48 |
-
}
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
|
53 |
def bert(context, question, pip):
|
54 |
return pip(context=context, question=question)
|
|
|
1 |
+
def squeezebert(context, question, pip):
|
2 |
+
return pip(context=context, question=question)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
def bert(context, question, pip):
|
5 |
return pip(context=context, question=question)
|
requirements.txt
CHANGED
@@ -13,4 +13,5 @@ chardet
|
|
13 |
frontend
|
14 |
typing
|
15 |
torch
|
16 |
-
pydantic
|
|
|
|
13 |
frontend
|
14 |
typing
|
15 |
torch
|
16 |
+
pydantic
|
17 |
+
PyPDF2
|
uploadFile.py
CHANGED
@@ -2,11 +2,11 @@ import chardet
|
|
2 |
from fastapi import UploadFile, HTTPException
|
3 |
from io import BytesIO
|
4 |
from docx import Document
|
5 |
-
import
|
6 |
|
7 |
async def file_to_text(file: UploadFile):
|
8 |
file_extension = file.filename.split('.')[-1].lower()
|
9 |
-
|
10 |
if file_extension == 'csv':
|
11 |
csv_data = await file.read()
|
12 |
encoding = chardet.detect(csv_data)['encoding']
|
@@ -16,12 +16,12 @@ async def file_to_text(file: UploadFile):
|
|
16 |
except UnicodeDecodeError:
|
17 |
raise HTTPException(status_code=400, detail="Le fichier CSV contient des caractères qui ne peuvent pas être décodés.")
|
18 |
|
19 |
-
# Fait
|
20 |
elif file_extension == 'json':
|
21 |
json_data = await file.read()
|
22 |
return json_data.decode()
|
23 |
|
24 |
-
# Fait
|
25 |
elif file_extension == 'docx':
|
26 |
doc_data = await file.read()
|
27 |
# Utilisez un flux mémoire pour passer les données au Document
|
@@ -29,23 +29,21 @@ async def file_to_text(file: UploadFile):
|
|
29 |
doc = Document(doc_stream)
|
30 |
doc_text = [paragraph.text for paragraph in doc.paragraphs]
|
31 |
return '\n'.join(doc_text)
|
32 |
-
|
33 |
-
# Fait
|
34 |
elif file_extension == 'txt':
|
35 |
txt_data = await file.read()
|
36 |
return txt_data.decode()
|
37 |
-
|
38 |
# Fait
|
39 |
elif file_extension == 'pdf':
|
40 |
try:
|
41 |
pdf_data = await file.read()
|
42 |
# Chargez les données binaires dans un objet fitz.Document
|
43 |
-
pdf_document =
|
44 |
-
text =
|
45 |
-
|
46 |
-
|
47 |
-
text += page.get_text()
|
48 |
-
pdf_document.close()
|
49 |
return text
|
50 |
except Exception as e:
|
51 |
raise HTTPException(status_code=500, detail=f"Erreur de lecture du fichier PDF : {e}")
|
|
|
2 |
from fastapi import UploadFile, HTTPException
|
3 |
from io import BytesIO
|
4 |
from docx import Document
|
5 |
+
import PyPDF2
|
6 |
|
7 |
async def file_to_text(file: UploadFile):
|
8 |
file_extension = file.filename.split('.')[-1].lower()
|
9 |
+
# Fait
|
10 |
if file_extension == 'csv':
|
11 |
csv_data = await file.read()
|
12 |
encoding = chardet.detect(csv_data)['encoding']
|
|
|
16 |
except UnicodeDecodeError:
|
17 |
raise HTTPException(status_code=400, detail="Le fichier CSV contient des caractères qui ne peuvent pas être décodés.")
|
18 |
|
19 |
+
# Fait
|
20 |
elif file_extension == 'json':
|
21 |
json_data = await file.read()
|
22 |
return json_data.decode()
|
23 |
|
24 |
+
# Fait
|
25 |
elif file_extension == 'docx':
|
26 |
doc_data = await file.read()
|
27 |
# Utilisez un flux mémoire pour passer les données au Document
|
|
|
29 |
doc = Document(doc_stream)
|
30 |
doc_text = [paragraph.text for paragraph in doc.paragraphs]
|
31 |
return '\n'.join(doc_text)
|
32 |
+
|
33 |
+
# Fait
|
34 |
elif file_extension == 'txt':
|
35 |
txt_data = await file.read()
|
36 |
return txt_data.decode()
|
37 |
+
|
38 |
# Fait
|
39 |
elif file_extension == 'pdf':
|
40 |
try:
|
41 |
pdf_data = await file.read()
|
42 |
# Chargez les données binaires dans un objet fitz.Document
|
43 |
+
pdf_document = PyPDF2.PdfReader(BytesIO(pdf_data))
|
44 |
+
text = ""
|
45 |
+
for page_number in range(len(pdf_document.pages)):
|
46 |
+
text += pdf_document.pages[page_number].extract_text()
|
|
|
|
|
47 |
return text
|
48 |
except Exception as e:
|
49 |
raise HTTPException(status_code=500, detail=f"Erreur de lecture du fichier PDF : {e}")
|