AP123 commited on
Commit
a8e6e93
·
1 Parent(s): 440f960

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +67 -0
main.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_pannellum import streamlit_pannellum
3
+ from diffusers import StableDiffusionLDM3DPipeline
4
+ from PIL import Image
5
+ from typing import Optional
6
+ from torch import Tensor
7
+ from torch.nn import functional as F
8
+ from torch.nn import Conv2d
9
+ from torch.nn.modules.utils import _pair
10
+
11
+ # Function to override _conv_forward method
12
+ def asymmetricConv2DConvForward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
13
+ paddingX = (self._reversed_padding_repeated_twice[0], self._reversed_padding_repeated_twice[1], 0, 0)
14
+ paddingY = (0, 0, self._reversed_padding_repeated_twice[2], self._reversed_padding_repeated_twice[3])
15
+ working = F.pad(input, paddingX, mode='circular')
16
+ working = F.pad(working, paddingY, mode='constant')
17
+ return F.conv2d(working, weight, bias, self.stride, _pair(0), self.dilation, self.groups)
18
+
19
+ # Load the pipeline
20
+ pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-pano")
21
+ pipe.to("cuda")
22
+
23
+ # Patch the Conv2d layers
24
+ targets = [pipe.vae, pipe.text_encoder, pipe.unet]
25
+ for target in targets:
26
+ for module in target.modules():
27
+ if isinstance(module, Conv2d):
28
+ module._conv_forward = asymmetricConv2DConvForward.__get__(module, Conv2d)
29
+
30
+ # Function to generate panoramic images
31
+ def generate_panoramic_image(prompt, name):
32
+ output = pipe(prompt, width=1024, height=512, guidance_scale=7.0, num_inference_steps=50)
33
+ rgb_image, depth_image = output.rgb, output.depth
34
+ rgb_image[0].save(name + "_ldm3d_rgb.jpg")
35
+ depth_image[0].save(name + "_ldd3d_depth.png")
36
+ return name + "_ldm3d_rgb.jpg", name + "_ldd3d_depth.png"
37
+
38
+ # Streamlit Interface
39
+ st.title("Pannellum Streamlit plugin")
40
+ st.markdown("This space is a showcase of the [streamlit_pannellum](https://gitlab.com/nicolalandro/streamlit-pannellum) lib.")
41
+
42
+ prompt = st.text_input("Enter a prompt for the panoramic image",
43
+ "360, Ben Erdt, Ognjen Sporin, Raphael Lacoste. A garden of oversized flowers...")
44
+
45
+ generate_button = st.button("Generate Panoramic Image")
46
+
47
+ if generate_button:
48
+ name = "generated_image" # This can be dynamic
49
+ rgb_image_path, _ = generate_panoramic_image(prompt, name)
50
+
51
+ # Display the generated panoramic image in Pannellum viewer
52
+ streamlit_pannellum(
53
+ config={
54
+ "default": {
55
+ "firstScene": "generated",
56
+ "autoLoad": True
57
+ },
58
+ "scenes": {
59
+ "generated": {
60
+ "title": "Generated Panoramic Image",
61
+ "type": "equirectangular",
62
+ "panorama": rgb_image_path,
63
+ "autoLoad": True,
64
+ }
65
+ }
66
+ }
67
+ )