pi_project_2023 / app.py
ASokirka's picture
Upload app.py
7c5a194 verified
# -*- coding: utf-8 -*-
"""Untitled19.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1GJzV4fIIiYUDFdGIyDG8QzzluC6Fy_aS
"""
import os
import re
import streamlit as st
import googleapiclient.discovery
import pandas as pd
from transformers import pipeline
import matplotlib.pyplot as plt
import seaborn as sns
st.title('Анализатор комментариев :red[YouTube] :sunglasses:')
# Инициализируем модель Hugging Face для анализа тональности текста
# Кэшируем ресурс для одной загрузки модели на все сессии
#@st.cache_resource
def load_model():
"""
Loads the 'blanchefort/rubert-base-cased-sentiment' model from HuggingFace
and saves to cache for consecutive loads.
"""
model = pipeline(
"sentiment-analysis",
"blanchefort/rubert-base-cased-sentiment")
return model
def extract_video_id(url: str) -> str:
"""
Extracts the video ID from a YouTube video URL.
Args: url (str): The YouTube video URL.
Returns: str: The extracted video ID,
or an empty string if the URL is not valid.
"""
pattern = r"(?<=v=)[\w-]+(?=&|\b)"
match = re.search(pattern, url)
if match:
return match.group()
else:
return ""
def download_comments(video_id: str) -> pd.DataFrame:
"""
Downloads comments from a YouTube video based on the provided video ID
and returns them as a DataFrame.
Args: video_id (str): The video ID of the YouTube video.
Returns: DataFrame: A DataFrame containing the downloaded comments from the video.
"""
DEV_KEY = os.getenv('API_KEY_YOUTUBE')
youtube = googleapiclient.discovery.build("youtube",
"v3",
developerKey=DEV_KEY)
request = youtube.commentThreads().list(part="snippet",
videoId=video_id,
maxResults=100)
response = request.execute()
comments = []
for item in response['items']:
comment = item['snippet']['topLevelComment']['snippet']
comments.append([comment['authorDisplayName'],
comment['publishedAt'],
comment['updatedAt'],
comment['likeCount'],
comment['textDisplay'],])
return pd.DataFrame(comments,
columns=['author',
'published_at',
'updated_at',
'like_count',
'text',])
def analyze_emotions_in_comments(df: pd.DataFrame) -> tuple:
"""
Takes a DataFrame with comments,
processes the emotional sentiment of each comment in the DataFrame
Args: dataframe (pandas.DataFrame): DataFrame containing comments to analyze.
Returns: tuple: containing the updated DataFrame with the added 'Emotional Sentiment' column
and the total count of processed comments.
"""
model = load_model()
selected_columns = ['text', 'author', 'published_at']
df = df[selected_columns]
res_list = []
res_list = model(df['text'][:513].to_list())
full_df = pd.concat([pd.DataFrame(res_list), df], axis=1)
return (full_df, len(res_list))
def plot_heatmap_from_dataframe(df: pd.DataFrame) -> plt:
"""
Visualizes the data from the input DataFrame and returns a matplotlib plot object.
Args: df (DataFrame): The input DataFrame containing the data to be visualized.
Returns: plt: A matplotlib plot object showing the visualization of the data.
"""
df['published_at'] = pd.to_datetime(df['published_at'])
df['Date'] = df['published_at'].dt.date
df['Hour'] = df['published_at'].dt.hour
pivot_table = df.pivot_table(index='Hour',
columns='Date',
values='text',
aggfunc='count')
plt.figure(figsize=(10, 6))
sns.heatmap(pivot_table,
cmap='YlGnBu')
plt.title('Количество комментариев по часам и датам')
plt.xlabel('Дата')
plt.ylabel('Час')
return plt
def visualize_data(df: pd.DataFrame):
"""
Visualizes the data from the input DataFrame and returns a matplotlib figure object.
Args: df (DataFrame): The input DataFrame containing the data to be visualized.
Returns: fig: A matplotlib figure object
"""
data = df['label'].value_counts()
fig, ax = plt.subplots()
plt.title("Эмоциональная окраска комментариев на YouTube")
label = data.index
ax.pie(data, labels=label, autopct='%1.1f%%')
return fig
def change_url():
st.session_state.start = False
if "start" not in st.session_state:
st.session_state.start = False
# Получаем id видеоролика из URL для отправки запроса
url = st.text_input(label="Enter URL from YouTube", on_change=change_url)
video_id = extract_video_id(url)
if video_id != "":
if btn_start := st.button('Загрузить комментарии'):
st.session_state.start = True
if st.session_state.start:
# Выводим таблицу с результатами на странице
comments_df = download_comments(video_id)
with st.spinner('Analyzing comments...'):
full_df, num_comments = analyze_emotions_in_comments(comments_df)
st.success(f'Готово! Обработано {num_comments} комментариев.')
st.write(full_df)
st.markdown('***')
# Выводим heatmap комментариев по часам и датам
st.pyplot(plot_heatmap_from_dataframe(full_df))
st.markdown('***')
# Выводим круговую диаграмму
st.pyplot(visualize_data(full_df))