Update app.py
Browse files
app.py
CHANGED
@@ -4,37 +4,67 @@ import random
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
|
|
7 |
|
8 |
dtype = torch.bfloat16
|
9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
@spaces.GPU()
|
17 |
-
def infer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
if randomize_seed:
|
19 |
seed = random.randint(0, MAX_SEED)
|
|
|
20 |
generator = torch.Generator().manual_seed(seed)
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
guidance_scale=0.0
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
31 |
examples = [
|
32 |
"a tiny astronaut hatching from an egg on the moon",
|
33 |
"a cat holding a sign that says hello world",
|
34 |
"an anime illustration of a wiener schnitzel",
|
35 |
]
|
36 |
|
37 |
-
css="""
|
38 |
#col-container {
|
39 |
margin: 0 auto;
|
40 |
max-width: 520px;
|
@@ -42,13 +72,18 @@ css="""
|
|
42 |
"""
|
43 |
|
44 |
with gr.Blocks(css=css) as demo:
|
45 |
-
|
46 |
with gr.Column(elem_id="col-container"):
|
47 |
-
gr.Markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
""")
|
49 |
|
50 |
with gr.Row():
|
51 |
-
|
52 |
prompt = gr.Text(
|
53 |
label="Prompt",
|
54 |
show_label=False,
|
@@ -56,13 +91,11 @@ with gr.Blocks(css=css) as demo:
|
|
56 |
placeholder="Enter your prompt",
|
57 |
container=False,
|
58 |
)
|
59 |
-
|
60 |
run_button = gr.Button("Run", scale=0)
|
61 |
|
62 |
result = gr.Image(label="Result", show_label=False)
|
63 |
|
64 |
with gr.Accordion("Advanced Settings", open=False):
|
65 |
-
|
66 |
seed = gr.Slider(
|
67 |
label="Seed",
|
68 |
minimum=0,
|
@@ -70,11 +103,9 @@ with gr.Blocks(css=css) as demo:
|
|
70 |
step=1,
|
71 |
value=0,
|
72 |
)
|
73 |
-
|
74 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
75 |
|
76 |
with gr.Row():
|
77 |
-
|
78 |
width = gr.Slider(
|
79 |
label="Width",
|
80 |
minimum=256,
|
@@ -82,7 +113,6 @@ with gr.Blocks(css=css) as demo:
|
|
82 |
step=32,
|
83 |
value=1024,
|
84 |
)
|
85 |
-
|
86 |
height = gr.Slider(
|
87 |
label="Height",
|
88 |
minimum=256,
|
@@ -92,8 +122,6 @@ with gr.Blocks(css=css) as demo:
|
|
92 |
)
|
93 |
|
94 |
with gr.Row():
|
95 |
-
|
96 |
-
|
97 |
num_inference_steps = gr.Slider(
|
98 |
label="Number of inference steps",
|
99 |
minimum=1,
|
@@ -103,18 +131,25 @@ with gr.Blocks(css=css) as demo:
|
|
103 |
)
|
104 |
|
105 |
gr.Examples(
|
106 |
-
examples
|
107 |
-
fn
|
108 |
-
inputs
|
109 |
-
outputs
|
110 |
cache_examples="lazy"
|
111 |
)
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
demo.launch()
|
|
|
4 |
import spaces
|
5 |
import torch
|
6 |
from diffusers import DiffusionPipeline
|
7 |
+
from transformers import CLIPTokenizer
|
8 |
|
9 |
dtype = torch.bfloat16
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Initialize CLIP tokenizer for prompt length checking
|
13 |
+
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
+
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(
|
16 |
+
"UnfilteredAI/NSFW-Flux-v1",
|
17 |
+
torch_dtype=dtype
|
18 |
+
).to(device)
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 2048
|
22 |
+
MAX_TOKENS = 77 # CLIP's maximum token length
|
23 |
+
|
24 |
+
def truncate_prompt(prompt):
|
25 |
+
"""Truncate the prompt to fit within CLIP's token limit"""
|
26 |
+
tokens = tokenizer.encode(prompt, truncation=True, max_length=MAX_TOKENS)
|
27 |
+
return tokenizer.decode(tokens)
|
28 |
|
29 |
@spaces.GPU()
|
30 |
+
def infer(
|
31 |
+
prompt,
|
32 |
+
seed=42,
|
33 |
+
randomize_seed=False,
|
34 |
+
width=1024,
|
35 |
+
height=1024,
|
36 |
+
num_inference_steps=4,
|
37 |
+
progress=gr.Progress(track_tqdm=True)
|
38 |
+
):
|
39 |
+
# Truncate prompt if necessary
|
40 |
+
truncated_prompt = truncate_prompt(prompt)
|
41 |
+
|
42 |
if randomize_seed:
|
43 |
seed = random.randint(0, MAX_SEED)
|
44 |
+
|
45 |
generator = torch.Generator().manual_seed(seed)
|
46 |
+
|
47 |
+
try:
|
48 |
+
image = pipe(
|
49 |
+
prompt=truncated_prompt,
|
50 |
+
width=width,
|
51 |
+
height=height,
|
52 |
+
num_inference_steps=num_inference_steps,
|
53 |
+
generator=generator,
|
54 |
guidance_scale=0.0
|
55 |
+
).images[0]
|
56 |
+
|
57 |
+
return image, seed
|
58 |
+
except Exception as e:
|
59 |
+
raise gr.Error(f"Error generating image: {str(e)}")
|
60 |
+
|
61 |
examples = [
|
62 |
"a tiny astronaut hatching from an egg on the moon",
|
63 |
"a cat holding a sign that says hello world",
|
64 |
"an anime illustration of a wiener schnitzel",
|
65 |
]
|
66 |
|
67 |
+
css = """
|
68 |
#col-container {
|
69 |
margin: 0 auto;
|
70 |
max-width: 520px;
|
|
|
72 |
"""
|
73 |
|
74 |
with gr.Blocks(css=css) as demo:
|
|
|
75 |
with gr.Column(elem_id="col-container"):
|
76 |
+
gr.Markdown("""
|
77 |
+
NSFW-Flux-v1 is a 12 billion parameter rectified flow transformer
|
78 |
+
capable of generating images from text descriptions.
|
79 |
+
Finetuned by UnfilteredAI, this model is designed to produce
|
80 |
+
a wide range of images, including explicit and NSFW
|
81 |
+
(Not Safe For Work) images from textual inputs.
|
82 |
+
|
83 |
+
Note: Long prompts will be automatically truncated to fit the model's requirements.
|
84 |
""")
|
85 |
|
86 |
with gr.Row():
|
|
|
87 |
prompt = gr.Text(
|
88 |
label="Prompt",
|
89 |
show_label=False,
|
|
|
91 |
placeholder="Enter your prompt",
|
92 |
container=False,
|
93 |
)
|
|
|
94 |
run_button = gr.Button("Run", scale=0)
|
95 |
|
96 |
result = gr.Image(label="Result", show_label=False)
|
97 |
|
98 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
99 |
seed = gr.Slider(
|
100 |
label="Seed",
|
101 |
minimum=0,
|
|
|
103 |
step=1,
|
104 |
value=0,
|
105 |
)
|
|
|
106 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
107 |
|
108 |
with gr.Row():
|
|
|
109 |
width = gr.Slider(
|
110 |
label="Width",
|
111 |
minimum=256,
|
|
|
113 |
step=32,
|
114 |
value=1024,
|
115 |
)
|
|
|
116 |
height = gr.Slider(
|
117 |
label="Height",
|
118 |
minimum=256,
|
|
|
122 |
)
|
123 |
|
124 |
with gr.Row():
|
|
|
|
|
125 |
num_inference_steps = gr.Slider(
|
126 |
label="Number of inference steps",
|
127 |
minimum=1,
|
|
|
131 |
)
|
132 |
|
133 |
gr.Examples(
|
134 |
+
examples=examples,
|
135 |
+
fn=infer,
|
136 |
+
inputs=[prompt],
|
137 |
+
outputs=[result, seed],
|
138 |
cache_examples="lazy"
|
139 |
)
|
140 |
+
|
141 |
+
gr.on(
|
142 |
+
triggers=[run_button.click, prompt.submit],
|
143 |
+
fn=infer,
|
144 |
+
inputs=[
|
145 |
+
prompt,
|
146 |
+
seed,
|
147 |
+
randomize_seed,
|
148 |
+
width,
|
149 |
+
height,
|
150 |
+
num_inference_steps
|
151 |
+
],
|
152 |
+
outputs=[result, seed]
|
153 |
+
)
|
154 |
|
155 |
demo.launch()
|