AbdurRehman313 commited on
Commit
02c107a
·
verified ·
1 Parent(s): 86cd531

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -31
app.py CHANGED
@@ -22,41 +22,17 @@ import streamlit as st
22
  import requests
23
  import torch
24
  from transformers import pipeline
 
25
 
26
- # Function to download the model from Google Drive using requests
27
- def download_file_from_drive(file_id, output_path):
28
- url = f'https://drive.google.com/uc?export=download&id={file_id}'
29
- response = requests.get(url, stream=True)
30
-
31
- if response.status_code == 200:
32
- with open(output_path, 'wb') as f:
33
- for chunk in response.iter_content(chunk_size=8192):
34
- if chunk:
35
- f.write(chunk)
36
- else:
37
- raise Exception(f"Failed to download file: Status code {response.status_code}")
38
-
39
- # Replace 'YOUR_FILE_ID' with the actual file ID of your model
40
- file_id = '1A2B3C4D5E6F7G8H9I0J'
41
- output_path = 'model.pt'
42
-
43
- # Download the model file
44
- try:
45
- download_file_from_drive(file_id, output_path)
46
- except Exception as e:
47
- st.error(f"Error downloading file: {e}")
48
- st.stop()
49
 
50
- # Load the model
51
- try:
52
- model = torch.load(output_path)
53
- model.eval()
54
- except Exception as e:
55
- st.error(f"Error loading model: {e}")
56
- st.stop()
57
 
58
  # Initialize the summarization pipeline
59
- summarizer = pipeline('summarization', model=model)
60
 
61
  # Streamlit app layout
62
  st.title("Text Summarization App")
 
22
  import requests
23
  import torch
24
  from transformers import pipeline
25
+ from transformers import T5ForConditionalGeneration, T5Tokenizer
26
 
27
+ # Replace with your Hugging Face model repository path
28
+ model_repo_path = 'AbdurRehman313/T5_samsum'
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
 
30
+ # Load the model and tokenizer
31
+ model = T5ForConditionalGeneration.from_pretrained(model_repo_path)
32
+ tokenizer = T5Tokenizer.from_pretrained(model_repo_path)
 
 
 
 
33
 
34
  # Initialize the summarization pipeline
35
+ summarizer = pipeline('summarization', model=model,tokenizer=tokenizer)
36
 
37
  # Streamlit app layout
38
  st.title("Text Summarization App")