|
import os
|
|
import random
|
|
import torch
|
|
import torch.utils.data
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
from tools.log import logger
|
|
import commons
|
|
from mel_processing import spectrogram_torch, mel_spectrogram_torch
|
|
from utils import load_wav_to_torch, load_filepaths_and_text
|
|
from text import cleaned_text_to_sequence
|
|
from config import config
|
|
|
|
"""Multi speaker version"""
|
|
|
|
|
|
class TextAudioSpeakerLoader(torch.utils.data.Dataset):
|
|
"""
|
|
1) loads audio, speaker_id, text pairs
|
|
2) normalizes text and converts them to sequences of integers
|
|
3) computes spectrograms from audio files.
|
|
"""
|
|
|
|
def __init__(self, audiopaths_sid_text, hparams):
|
|
self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text)
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.filter_length = hparams.filter_length
|
|
self.hop_length = hparams.hop_length
|
|
self.win_length = hparams.win_length
|
|
self.sampling_rate = hparams.sampling_rate
|
|
self.spk_map = hparams.spk2id
|
|
self.hparams = hparams
|
|
|
|
self.use_mel_spec_posterior = getattr(
|
|
hparams, "use_mel_posterior_encoder", False
|
|
)
|
|
if self.use_mel_spec_posterior:
|
|
self.n_mel_channels = getattr(hparams, "n_mel_channels", 80)
|
|
|
|
self.cleaned_text = getattr(hparams, "cleaned_text", False)
|
|
|
|
self.add_blank = hparams.add_blank
|
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
self.max_text_len = getattr(hparams, "max_text_len", 384)
|
|
|
|
random.seed(1234)
|
|
random.shuffle(self.audiopaths_sid_text)
|
|
self._filter()
|
|
|
|
def _filter(self):
|
|
"""
|
|
Filter text & store spec lengths
|
|
"""
|
|
|
|
|
|
|
|
|
|
audiopaths_sid_text_new = []
|
|
lengths = []
|
|
skipped = 0
|
|
logger.info("Init dataset...")
|
|
for _id, spk, language, text, phones, tone, word2ph in tqdm(
|
|
self.audiopaths_sid_text
|
|
):
|
|
audiopath = f"{_id}"
|
|
if self.min_text_len <= len(phones) and len(phones) <= self.max_text_len:
|
|
phones = phones.split(" ")
|
|
tone = [int(i) for i in tone.split(" ")]
|
|
word2ph = [int(i) for i in word2ph.split(" ")]
|
|
audiopaths_sid_text_new.append(
|
|
[audiopath, spk, language, text, phones, tone, word2ph]
|
|
)
|
|
lengths.append(os.path.getsize(audiopath) // (2 * self.hop_length))
|
|
else:
|
|
skipped += 1
|
|
logger.info(
|
|
"skipped: "
|
|
+ str(skipped)
|
|
+ ", total: "
|
|
+ str(len(self.audiopaths_sid_text))
|
|
)
|
|
self.audiopaths_sid_text = audiopaths_sid_text_new
|
|
self.lengths = lengths
|
|
|
|
def get_audio_text_speaker_pair(self, audiopath_sid_text):
|
|
|
|
audiopath, sid, language, text, phones, tone, word2ph = audiopath_sid_text
|
|
|
|
bert, ja_bert, en_bert, phones, tone, language = self.get_text(
|
|
text, word2ph, phones, tone, language, audiopath
|
|
)
|
|
|
|
spec, wav = self.get_audio(audiopath)
|
|
sid = torch.LongTensor([int(self.spk_map[sid])])
|
|
style_vec = torch.FloatTensor(np.load(f"{audiopath}.npy"))
|
|
return (
|
|
phones,
|
|
spec,
|
|
wav,
|
|
sid,
|
|
tone,
|
|
language,
|
|
bert,
|
|
ja_bert,
|
|
en_bert,
|
|
style_vec,
|
|
)
|
|
|
|
def get_audio(self, filename):
|
|
audio, sampling_rate = load_wav_to_torch(filename)
|
|
if sampling_rate != self.sampling_rate:
|
|
raise ValueError(
|
|
"{} {} SR doesn't match target {} SR".format(
|
|
filename, sampling_rate, self.sampling_rate
|
|
)
|
|
)
|
|
audio_norm = audio / self.max_wav_value
|
|
audio_norm = audio_norm.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
if self.use_mel_spec_posterior:
|
|
spec_filename = spec_filename.replace(".spec.pt", ".mel.pt")
|
|
try:
|
|
spec = torch.load(spec_filename)
|
|
except:
|
|
if self.use_mel_spec_posterior:
|
|
spec = mel_spectrogram_torch(
|
|
audio_norm,
|
|
self.filter_length,
|
|
self.n_mel_channels,
|
|
self.sampling_rate,
|
|
self.hop_length,
|
|
self.win_length,
|
|
self.hparams.mel_fmin,
|
|
self.hparams.mel_fmax,
|
|
center=False,
|
|
)
|
|
else:
|
|
spec = spectrogram_torch(
|
|
audio_norm,
|
|
self.filter_length,
|
|
self.sampling_rate,
|
|
self.hop_length,
|
|
self.win_length,
|
|
center=False,
|
|
)
|
|
spec = torch.squeeze(spec, 0)
|
|
if config.train_ms_config.spec_cache:
|
|
torch.save(spec, spec_filename)
|
|
return spec, audio_norm
|
|
|
|
def get_text(self, text, word2ph, phone, tone, language_str, wav_path):
|
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
|
|
if self.add_blank:
|
|
phone = commons.intersperse(phone, 0)
|
|
tone = commons.intersperse(tone, 0)
|
|
language = commons.intersperse(language, 0)
|
|
for i in range(len(word2ph)):
|
|
word2ph[i] = word2ph[i] * 2
|
|
word2ph[0] += 1
|
|
bert_path = wav_path.replace(".wav", ".bert.pt")
|
|
try:
|
|
bert_ori = torch.load(bert_path)
|
|
assert bert_ori.shape[-1] == len(phone)
|
|
except Exception as e:
|
|
logger.warning("Bert load Failed")
|
|
logger.warning(e)
|
|
|
|
if language_str == "ZH":
|
|
bert = bert_ori
|
|
ja_bert = torch.zeros(1024, len(phone))
|
|
en_bert = torch.zeros(1024, len(phone))
|
|
elif language_str == "JP":
|
|
bert = torch.zeros(1024, len(phone))
|
|
ja_bert = bert_ori
|
|
en_bert = torch.zeros(1024, len(phone))
|
|
elif language_str == "EN":
|
|
bert = torch.zeros(1024, len(phone))
|
|
ja_bert = torch.zeros(1024, len(phone))
|
|
en_bert = bert_ori
|
|
phone = torch.LongTensor(phone)
|
|
tone = torch.LongTensor(tone)
|
|
language = torch.LongTensor(language)
|
|
return bert, ja_bert, en_bert, phone, tone, language
|
|
|
|
def get_sid(self, sid):
|
|
sid = torch.LongTensor([int(sid)])
|
|
return sid
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_sid_text)
|
|
|
|
|
|
class TextAudioSpeakerCollate:
|
|
"""Zero-pads model inputs and targets"""
|
|
|
|
def __init__(self, return_ids=False):
|
|
self.return_ids = return_ids
|
|
|
|
def __call__(self, batch):
|
|
"""Collate's training batch from normalized text, audio and speaker identities
|
|
PARAMS
|
|
------
|
|
batch: [text_normalized, spec_normalized, wav_normalized, sid]
|
|
"""
|
|
|
|
_, ids_sorted_decreasing = torch.sort(
|
|
torch.LongTensor([x[1].size(1) for x in batch]), dim=0, descending=True
|
|
)
|
|
|
|
max_text_len = max([len(x[0]) for x in batch])
|
|
max_spec_len = max([x[1].size(1) for x in batch])
|
|
max_wav_len = max([x[2].size(1) for x in batch])
|
|
|
|
text_lengths = torch.LongTensor(len(batch))
|
|
spec_lengths = torch.LongTensor(len(batch))
|
|
wav_lengths = torch.LongTensor(len(batch))
|
|
sid = torch.LongTensor(len(batch))
|
|
|
|
text_padded = torch.LongTensor(len(batch), max_text_len)
|
|
tone_padded = torch.LongTensor(len(batch), max_text_len)
|
|
language_padded = torch.LongTensor(len(batch), max_text_len)
|
|
bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
|
ja_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
|
en_bert_padded = torch.FloatTensor(len(batch), 1024, max_text_len)
|
|
style_vec = torch.FloatTensor(len(batch), 256)
|
|
|
|
spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
|
|
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
|
|
text_padded.zero_()
|
|
tone_padded.zero_()
|
|
language_padded.zero_()
|
|
spec_padded.zero_()
|
|
wav_padded.zero_()
|
|
bert_padded.zero_()
|
|
ja_bert_padded.zero_()
|
|
en_bert_padded.zero_()
|
|
style_vec.zero_()
|
|
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
|
|
text = row[0]
|
|
text_padded[i, : text.size(0)] = text
|
|
text_lengths[i] = text.size(0)
|
|
|
|
spec = row[1]
|
|
spec_padded[i, :, : spec.size(1)] = spec
|
|
spec_lengths[i] = spec.size(1)
|
|
|
|
wav = row[2]
|
|
wav_padded[i, :, : wav.size(1)] = wav
|
|
wav_lengths[i] = wav.size(1)
|
|
|
|
sid[i] = row[3]
|
|
|
|
tone = row[4]
|
|
tone_padded[i, : tone.size(0)] = tone
|
|
|
|
language = row[5]
|
|
language_padded[i, : language.size(0)] = language
|
|
|
|
bert = row[6]
|
|
bert_padded[i, :, : bert.size(1)] = bert
|
|
|
|
ja_bert = row[7]
|
|
ja_bert_padded[i, :, : ja_bert.size(1)] = ja_bert
|
|
|
|
en_bert = row[8]
|
|
en_bert_padded[i, :, : en_bert.size(1)] = en_bert
|
|
|
|
style_vec[i, :] = row[9]
|
|
|
|
return (
|
|
text_padded,
|
|
text_lengths,
|
|
spec_padded,
|
|
spec_lengths,
|
|
wav_padded,
|
|
wav_lengths,
|
|
sid,
|
|
tone_padded,
|
|
language_padded,
|
|
bert_padded,
|
|
ja_bert_padded,
|
|
en_bert_padded,
|
|
style_vec,
|
|
)
|
|
|
|
|
|
class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
|
|
"""
|
|
Maintain similar input lengths in a batch.
|
|
Length groups are specified by boundaries.
|
|
Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
|
|
|
|
It removes samples which are not included in the boundaries.
|
|
Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dataset,
|
|
batch_size,
|
|
boundaries,
|
|
num_replicas=None,
|
|
rank=None,
|
|
shuffle=True,
|
|
):
|
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
|
self.lengths = dataset.lengths
|
|
self.batch_size = batch_size
|
|
self.boundaries = boundaries
|
|
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
|
logger.info(f"Bucket info: {self.num_samples_per_bucket}")
|
|
logger.info(
|
|
f"Unused samples: {len(self.lengths) - sum(self.num_samples_per_bucket)}"
|
|
)
|
|
self.total_size = sum(self.num_samples_per_bucket)
|
|
self.num_samples = self.total_size // self.num_replicas
|
|
|
|
def _create_buckets(self):
|
|
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
|
for i in range(len(self.lengths)):
|
|
length = self.lengths[i]
|
|
idx_bucket = self._bisect(length)
|
|
if idx_bucket != -1:
|
|
buckets[idx_bucket].append(i)
|
|
|
|
try:
|
|
for i in range(len(buckets) - 1, 0, -1):
|
|
if len(buckets[i]) == 0:
|
|
buckets.pop(i)
|
|
self.boundaries.pop(i + 1)
|
|
assert all(len(bucket) > 0 for bucket in buckets)
|
|
|
|
except Exception as e:
|
|
print("Bucket warning ", e)
|
|
for i in range(len(buckets) - 1, -1, -1):
|
|
if len(buckets[i]) == 0:
|
|
buckets.pop(i)
|
|
self.boundaries.pop(i + 1)
|
|
|
|
num_samples_per_bucket = []
|
|
for i in range(len(buckets)):
|
|
len_bucket = len(buckets[i])
|
|
total_batch_size = self.num_replicas * self.batch_size
|
|
rem = (
|
|
total_batch_size - (len_bucket % total_batch_size)
|
|
) % total_batch_size
|
|
num_samples_per_bucket.append(len_bucket + rem)
|
|
return buckets, num_samples_per_bucket
|
|
|
|
def __iter__(self):
|
|
|
|
g = torch.Generator()
|
|
g.manual_seed(self.epoch)
|
|
|
|
indices = []
|
|
if self.shuffle:
|
|
for bucket in self.buckets:
|
|
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
|
else:
|
|
for bucket in self.buckets:
|
|
indices.append(list(range(len(bucket))))
|
|
|
|
batches = []
|
|
for i in range(len(self.buckets)):
|
|
bucket = self.buckets[i]
|
|
len_bucket = len(bucket)
|
|
if len_bucket == 0:
|
|
continue
|
|
ids_bucket = indices[i]
|
|
num_samples_bucket = self.num_samples_per_bucket[i]
|
|
|
|
|
|
rem = num_samples_bucket - len_bucket
|
|
ids_bucket = (
|
|
ids_bucket
|
|
+ ids_bucket * (rem // len_bucket)
|
|
+ ids_bucket[: (rem % len_bucket)]
|
|
)
|
|
|
|
|
|
ids_bucket = ids_bucket[self.rank :: self.num_replicas]
|
|
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size):
|
|
batch = [
|
|
bucket[idx]
|
|
for idx in ids_bucket[
|
|
j * self.batch_size : (j + 1) * self.batch_size
|
|
]
|
|
]
|
|
batches.append(batch)
|
|
|
|
if self.shuffle:
|
|
batch_ids = torch.randperm(len(batches), generator=g).tolist()
|
|
batches = [batches[i] for i in batch_ids]
|
|
self.batches = batches
|
|
|
|
assert len(self.batches) * self.batch_size == self.num_samples
|
|
return iter(self.batches)
|
|
|
|
def _bisect(self, x, lo=0, hi=None):
|
|
if hi is None:
|
|
hi = len(self.boundaries) - 1
|
|
|
|
if hi > lo:
|
|
mid = (hi + lo) // 2
|
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
|
|
return mid
|
|
elif x <= self.boundaries[mid]:
|
|
return self._bisect(x, lo, mid)
|
|
else:
|
|
return self._bisect(x, mid + 1, hi)
|
|
else:
|
|
return -1
|
|
|
|
def __len__(self):
|
|
return self.num_samples // self.batch_size
|
|
|