|
import sys
|
|
|
|
import torch
|
|
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
|
|
|
from config import config
|
|
from text.japanese import text2sep_kata
|
|
|
|
LOCAL_PATH = "./bert/deberta-v2-large-japanese-char-wwm"
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(LOCAL_PATH)
|
|
|
|
models = dict()
|
|
|
|
|
|
def get_bert_feature(
|
|
text,
|
|
word2ph,
|
|
device=config.bert_gen_config.device,
|
|
assist_text=None,
|
|
assist_text_weight=0.7,
|
|
):
|
|
text = "".join(text2sep_kata(text)[0])
|
|
if assist_text:
|
|
assist_text = "".join(text2sep_kata(assist_text)[0])
|
|
if (
|
|
sys.platform == "darwin"
|
|
and torch.backends.mps.is_available()
|
|
and device == "cpu"
|
|
):
|
|
device = "mps"
|
|
if not device:
|
|
device = "cuda"
|
|
if device == "cuda" and not torch.cuda.is_available():
|
|
device = "cpu"
|
|
if device not in models.keys():
|
|
models[device] = AutoModelForMaskedLM.from_pretrained(LOCAL_PATH).to(device)
|
|
with torch.no_grad():
|
|
inputs = tokenizer(text, return_tensors="pt")
|
|
for i in inputs:
|
|
inputs[i] = inputs[i].to(device)
|
|
res = models[device](**inputs, output_hidden_states=True)
|
|
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()
|
|
if assist_text:
|
|
style_inputs = tokenizer(assist_text, return_tensors="pt")
|
|
for i in style_inputs:
|
|
style_inputs[i] = style_inputs[i].to(device)
|
|
style_res = models[device](**style_inputs, output_hidden_states=True)
|
|
style_res = torch.cat(style_res["hidden_states"][-3:-2], -1)[0].cpu()
|
|
style_res_mean = style_res.mean(0)
|
|
|
|
assert len(word2ph) == len(text) + 2, text
|
|
word2phone = word2ph
|
|
phone_level_feature = []
|
|
for i in range(len(word2phone)):
|
|
if assist_text:
|
|
repeat_feature = (
|
|
res[i].repeat(word2phone[i], 1) * (1 - assist_text_weight)
|
|
+ style_res_mean.repeat(word2phone[i], 1) * assist_text_weight
|
|
)
|
|
else:
|
|
repeat_feature = res[i].repeat(word2phone[i], 1)
|
|
phone_level_feature.append(repeat_feature)
|
|
|
|
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
|
|
|
return phone_level_feature.T
|
|
|