|
import math
|
|
import torch
|
|
from torch import nn
|
|
from torch.nn import functional as F
|
|
|
|
import commons
|
|
import modules
|
|
import attentions
|
|
import monotonic_align
|
|
|
|
from torch.nn import Conv1d, ConvTranspose1d, Conv2d
|
|
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
|
|
|
from commons import init_weights, get_padding
|
|
from text import symbols, num_tones, num_languages
|
|
|
|
|
|
class DurationDiscriminator(nn.Module):
|
|
def __init__(
|
|
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
|
):
|
|
super().__init__()
|
|
|
|
self.in_channels = in_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.gin_channels = gin_channels
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.conv_1 = nn.Conv1d(
|
|
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
)
|
|
self.norm_1 = modules.LayerNorm(filter_channels)
|
|
self.conv_2 = nn.Conv1d(
|
|
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
)
|
|
self.norm_2 = modules.LayerNorm(filter_channels)
|
|
self.dur_proj = nn.Conv1d(1, filter_channels, 1)
|
|
|
|
self.LSTM = nn.LSTM(
|
|
2 * filter_channels, filter_channels, batch_first=True, bidirectional=True
|
|
)
|
|
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
|
|
|
self.output_layer = nn.Sequential(
|
|
nn.Linear(2 * filter_channels, 1), nn.Sigmoid()
|
|
)
|
|
|
|
def forward_probability(self, x, dur):
|
|
dur = self.dur_proj(dur)
|
|
x = torch.cat([x, dur], dim=1)
|
|
x = x.transpose(1, 2)
|
|
x, _ = self.LSTM(x)
|
|
output_prob = self.output_layer(x)
|
|
return output_prob
|
|
|
|
def forward(self, x, x_mask, dur_r, dur_hat, g=None):
|
|
x = torch.detach(x)
|
|
if g is not None:
|
|
g = torch.detach(g)
|
|
x = x + self.cond(g)
|
|
x = self.conv_1(x * x_mask)
|
|
x = torch.relu(x)
|
|
x = self.norm_1(x)
|
|
x = self.drop(x)
|
|
x = self.conv_2(x * x_mask)
|
|
x = torch.relu(x)
|
|
x = self.norm_2(x)
|
|
x = self.drop(x)
|
|
|
|
output_probs = []
|
|
for dur in [dur_r, dur_hat]:
|
|
output_prob = self.forward_probability(x, dur)
|
|
output_probs.append(output_prob)
|
|
|
|
return output_probs
|
|
|
|
|
|
class TransformerCouplingBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
n_flows=4,
|
|
gin_channels=0,
|
|
share_parameter=False,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.n_layers = n_layers
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.flows = nn.ModuleList()
|
|
|
|
self.wn = (
|
|
attentions.FFT(
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
isflow=True,
|
|
gin_channels=self.gin_channels,
|
|
)
|
|
if share_parameter
|
|
else None
|
|
)
|
|
|
|
for i in range(n_flows):
|
|
self.flows.append(
|
|
modules.TransformerCouplingLayer(
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
n_layers,
|
|
n_heads,
|
|
p_dropout,
|
|
filter_channels,
|
|
mean_only=True,
|
|
wn_sharing_parameter=self.wn,
|
|
gin_channels=self.gin_channels,
|
|
)
|
|
)
|
|
self.flows.append(modules.Flip())
|
|
|
|
def forward(self, x, x_mask, g=None, reverse=False):
|
|
if not reverse:
|
|
for flow in self.flows:
|
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
else:
|
|
for flow in reversed(self.flows):
|
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
return x
|
|
|
|
|
|
class StochasticDurationPredictor(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
filter_channels,
|
|
kernel_size,
|
|
p_dropout,
|
|
n_flows=4,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
filter_channels = in_channels
|
|
self.in_channels = in_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.log_flow = modules.Log()
|
|
self.flows = nn.ModuleList()
|
|
self.flows.append(modules.ElementwiseAffine(2))
|
|
for i in range(n_flows):
|
|
self.flows.append(
|
|
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
|
)
|
|
self.flows.append(modules.Flip())
|
|
|
|
self.post_pre = nn.Conv1d(1, filter_channels, 1)
|
|
self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
|
self.post_convs = modules.DDSConv(
|
|
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
|
)
|
|
self.post_flows = nn.ModuleList()
|
|
self.post_flows.append(modules.ElementwiseAffine(2))
|
|
for i in range(4):
|
|
self.post_flows.append(
|
|
modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)
|
|
)
|
|
self.post_flows.append(modules.Flip())
|
|
|
|
self.pre = nn.Conv1d(in_channels, filter_channels, 1)
|
|
self.proj = nn.Conv1d(filter_channels, filter_channels, 1)
|
|
self.convs = modules.DDSConv(
|
|
filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout
|
|
)
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, filter_channels, 1)
|
|
|
|
def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0):
|
|
x = torch.detach(x)
|
|
x = self.pre(x)
|
|
if g is not None:
|
|
g = torch.detach(g)
|
|
x = x + self.cond(g)
|
|
x = self.convs(x, x_mask)
|
|
x = self.proj(x) * x_mask
|
|
|
|
if not reverse:
|
|
flows = self.flows
|
|
assert w is not None
|
|
|
|
logdet_tot_q = 0
|
|
h_w = self.post_pre(w)
|
|
h_w = self.post_convs(h_w, x_mask)
|
|
h_w = self.post_proj(h_w) * x_mask
|
|
e_q = (
|
|
torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype)
|
|
* x_mask
|
|
)
|
|
z_q = e_q
|
|
for flow in self.post_flows:
|
|
z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w))
|
|
logdet_tot_q += logdet_q
|
|
z_u, z1 = torch.split(z_q, [1, 1], 1)
|
|
u = torch.sigmoid(z_u) * x_mask
|
|
z0 = (w - u) * x_mask
|
|
logdet_tot_q += torch.sum(
|
|
(F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]
|
|
)
|
|
logq = (
|
|
torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2])
|
|
- logdet_tot_q
|
|
)
|
|
|
|
logdet_tot = 0
|
|
z0, logdet = self.log_flow(z0, x_mask)
|
|
logdet_tot += logdet
|
|
z = torch.cat([z0, z1], 1)
|
|
for flow in flows:
|
|
z, logdet = flow(z, x_mask, g=x, reverse=reverse)
|
|
logdet_tot = logdet_tot + logdet
|
|
nll = (
|
|
torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2])
|
|
- logdet_tot
|
|
)
|
|
return nll + logq
|
|
else:
|
|
flows = list(reversed(self.flows))
|
|
flows = flows[:-2] + [flows[-1]]
|
|
z = (
|
|
torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype)
|
|
* noise_scale
|
|
)
|
|
for flow in flows:
|
|
z = flow(z, x_mask, g=x, reverse=reverse)
|
|
z0, z1 = torch.split(z, [1, 1], 1)
|
|
logw = z0
|
|
return logw
|
|
|
|
|
|
class DurationPredictor(nn.Module):
|
|
def __init__(
|
|
self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0
|
|
):
|
|
super().__init__()
|
|
|
|
self.in_channels = in_channels
|
|
self.filter_channels = filter_channels
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.gin_channels = gin_channels
|
|
|
|
self.drop = nn.Dropout(p_dropout)
|
|
self.conv_1 = nn.Conv1d(
|
|
in_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
)
|
|
self.norm_1 = modules.LayerNorm(filter_channels)
|
|
self.conv_2 = nn.Conv1d(
|
|
filter_channels, filter_channels, kernel_size, padding=kernel_size // 2
|
|
)
|
|
self.norm_2 = modules.LayerNorm(filter_channels)
|
|
self.proj = nn.Conv1d(filter_channels, 1, 1)
|
|
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, in_channels, 1)
|
|
|
|
def forward(self, x, x_mask, g=None):
|
|
x = torch.detach(x)
|
|
if g is not None:
|
|
g = torch.detach(g)
|
|
x = x + self.cond(g)
|
|
x = self.conv_1(x * x_mask)
|
|
x = torch.relu(x)
|
|
x = self.norm_1(x)
|
|
x = self.drop(x)
|
|
x = self.conv_2(x * x_mask)
|
|
x = torch.relu(x)
|
|
x = self.norm_2(x)
|
|
x = self.drop(x)
|
|
x = self.proj(x * x_mask)
|
|
return x * x_mask
|
|
|
|
|
|
class Bottleneck(nn.Sequential):
|
|
def __init__(self, in_dim, hidden_dim):
|
|
c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False)
|
|
c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False)
|
|
super().__init__(*[c_fc1, c_fc2])
|
|
|
|
|
|
class Block(nn.Module):
|
|
def __init__(self, in_dim, hidden_dim) -> None:
|
|
super().__init__()
|
|
self.norm = nn.LayerNorm(in_dim)
|
|
self.mlp = MLP(in_dim, hidden_dim)
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x + self.mlp(self.norm(x))
|
|
return x
|
|
|
|
|
|
class MLP(nn.Module):
|
|
def __init__(self, in_dim, hidden_dim):
|
|
super().__init__()
|
|
self.c_fc1 = nn.Linear(in_dim, hidden_dim, bias=False)
|
|
self.c_fc2 = nn.Linear(in_dim, hidden_dim, bias=False)
|
|
self.c_proj = nn.Linear(hidden_dim, in_dim, bias=False)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = F.silu(self.c_fc1(x)) * self.c_fc2(x)
|
|
x = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class TextEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
n_vocab,
|
|
out_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
self.n_vocab = n_vocab
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.gin_channels = gin_channels
|
|
self.emb = nn.Embedding(len(symbols), hidden_channels)
|
|
nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5)
|
|
self.tone_emb = nn.Embedding(num_tones, hidden_channels)
|
|
nn.init.normal_(self.tone_emb.weight, 0.0, hidden_channels**-0.5)
|
|
self.language_emb = nn.Embedding(num_languages, hidden_channels)
|
|
nn.init.normal_(self.language_emb.weight, 0.0, hidden_channels**-0.5)
|
|
self.bert_proj = nn.Conv1d(1024, hidden_channels, 1)
|
|
|
|
|
|
self.style_proj = nn.Linear(256, hidden_channels)
|
|
|
|
self.encoder = attentions.Encoder(
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
gin_channels=self.gin_channels,
|
|
)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
|
|
def forward(self, x, x_lengths, tone, language, bert, style_vec, g=None):
|
|
bert_emb = self.bert_proj(bert).transpose(1, 2)
|
|
style_emb = self.style_proj(style_vec.unsqueeze(1))
|
|
x = (
|
|
self.emb(x)
|
|
+ self.tone_emb(tone)
|
|
+ self.language_emb(language)
|
|
+ bert_emb
|
|
+ style_emb
|
|
) * math.sqrt(
|
|
self.hidden_channels
|
|
)
|
|
x = torch.transpose(x, 1, -1)
|
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
|
x.dtype
|
|
)
|
|
|
|
x = self.encoder(x * x_mask, x_mask, g=g)
|
|
stats = self.proj(x) * x_mask
|
|
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
return x, m, logs, x_mask
|
|
|
|
|
|
class ResidualCouplingBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
n_flows=4,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
self.channels = channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.n_flows = n_flows
|
|
self.gin_channels = gin_channels
|
|
|
|
self.flows = nn.ModuleList()
|
|
for i in range(n_flows):
|
|
self.flows.append(
|
|
modules.ResidualCouplingLayer(
|
|
channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=gin_channels,
|
|
mean_only=True,
|
|
)
|
|
)
|
|
self.flows.append(modules.Flip())
|
|
|
|
def forward(self, x, x_mask, g=None, reverse=False):
|
|
if not reverse:
|
|
for flow in self.flows:
|
|
x, _ = flow(x, x_mask, g=g, reverse=reverse)
|
|
else:
|
|
for flow in reversed(self.flows):
|
|
x = flow(x, x_mask, g=g, reverse=reverse)
|
|
return x
|
|
|
|
|
|
class PosteriorEncoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
out_channels,
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=0,
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
self.out_channels = out_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.kernel_size = kernel_size
|
|
self.dilation_rate = dilation_rate
|
|
self.n_layers = n_layers
|
|
self.gin_channels = gin_channels
|
|
|
|
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
|
self.enc = modules.WN(
|
|
hidden_channels,
|
|
kernel_size,
|
|
dilation_rate,
|
|
n_layers,
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
|
|
|
|
def forward(self, x, x_lengths, g=None):
|
|
x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(
|
|
x.dtype
|
|
)
|
|
x = self.pre(x) * x_mask
|
|
x = self.enc(x, x_mask, g=g)
|
|
stats = self.proj(x) * x_mask
|
|
m, logs = torch.split(stats, self.out_channels, dim=1)
|
|
z = (m + torch.randn_like(m) * torch.exp(logs)) * x_mask
|
|
return z, m, logs, x_mask
|
|
|
|
|
|
class Generator(torch.nn.Module):
|
|
def __init__(
|
|
self,
|
|
initial_channel,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
gin_channels=0,
|
|
):
|
|
super(Generator, self).__init__()
|
|
self.num_kernels = len(resblock_kernel_sizes)
|
|
self.num_upsamples = len(upsample_rates)
|
|
self.conv_pre = Conv1d(
|
|
initial_channel, upsample_initial_channel, 7, 1, padding=3
|
|
)
|
|
resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2
|
|
|
|
self.ups = nn.ModuleList()
|
|
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
|
self.ups.append(
|
|
weight_norm(
|
|
ConvTranspose1d(
|
|
upsample_initial_channel // (2**i),
|
|
upsample_initial_channel // (2 ** (i + 1)),
|
|
k,
|
|
u,
|
|
padding=(k - u) // 2,
|
|
)
|
|
)
|
|
)
|
|
|
|
self.resblocks = nn.ModuleList()
|
|
for i in range(len(self.ups)):
|
|
ch = upsample_initial_channel // (2 ** (i + 1))
|
|
for j, (k, d) in enumerate(
|
|
zip(resblock_kernel_sizes, resblock_dilation_sizes)
|
|
):
|
|
self.resblocks.append(resblock(ch, k, d))
|
|
|
|
self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
|
|
self.ups.apply(init_weights)
|
|
|
|
if gin_channels != 0:
|
|
self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1)
|
|
|
|
def forward(self, x, g=None):
|
|
x = self.conv_pre(x)
|
|
if g is not None:
|
|
x = x + self.cond(g)
|
|
|
|
for i in range(self.num_upsamples):
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
x = self.ups[i](x)
|
|
xs = None
|
|
for j in range(self.num_kernels):
|
|
if xs is None:
|
|
xs = self.resblocks[i * self.num_kernels + j](x)
|
|
else:
|
|
xs += self.resblocks[i * self.num_kernels + j](x)
|
|
x = xs / self.num_kernels
|
|
x = F.leaky_relu(x)
|
|
x = self.conv_post(x)
|
|
x = torch.tanh(x)
|
|
|
|
return x
|
|
|
|
def remove_weight_norm(self):
|
|
print("Removing weight norm...")
|
|
for layer in self.ups:
|
|
remove_weight_norm(layer)
|
|
for layer in self.resblocks:
|
|
layer.remove_weight_norm()
|
|
|
|
|
|
class DiscriminatorP(torch.nn.Module):
|
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
|
super(DiscriminatorP, self).__init__()
|
|
self.period = period
|
|
self.use_spectral_norm = use_spectral_norm
|
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(
|
|
Conv2d(
|
|
1,
|
|
32,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
32,
|
|
128,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
128,
|
|
512,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
512,
|
|
1024,
|
|
(kernel_size, 1),
|
|
(stride, 1),
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
norm_f(
|
|
Conv2d(
|
|
1024,
|
|
1024,
|
|
(kernel_size, 1),
|
|
1,
|
|
padding=(get_padding(kernel_size, 1), 0),
|
|
)
|
|
),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
|
|
b, c, t = x.shape
|
|
if t % self.period != 0:
|
|
n_pad = self.period - (t % self.period)
|
|
x = F.pad(x, (0, n_pad), "reflect")
|
|
t = t + n_pad
|
|
x = x.view(b, c, t // self.period, self.period)
|
|
|
|
for layer in self.convs:
|
|
x = layer(x)
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class DiscriminatorS(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(DiscriminatorS, self).__init__()
|
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
|
norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
|
|
norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
|
|
norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
|
|
norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
|
|
]
|
|
)
|
|
self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
|
|
for layer in self.convs:
|
|
x = layer(x)
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x, fmap
|
|
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False):
|
|
super(MultiPeriodDiscriminator, self).__init__()
|
|
periods = [2, 3, 5, 7, 11]
|
|
|
|
discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
|
|
discs = discs + [
|
|
DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods
|
|
]
|
|
self.discriminators = nn.ModuleList(discs)
|
|
|
|
def forward(self, y, y_hat):
|
|
y_d_rs = []
|
|
y_d_gs = []
|
|
fmap_rs = []
|
|
fmap_gs = []
|
|
for i, d in enumerate(self.discriminators):
|
|
y_d_r, fmap_r = d(y)
|
|
y_d_g, fmap_g = d(y_hat)
|
|
y_d_rs.append(y_d_r)
|
|
y_d_gs.append(y_d_g)
|
|
fmap_rs.append(fmap_r)
|
|
fmap_gs.append(fmap_g)
|
|
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
|
|
|
|
class WavLMDiscriminator(nn.Module):
|
|
"""docstring for Discriminator."""
|
|
|
|
def __init__(
|
|
self, slm_hidden=768, slm_layers=13, initial_channel=64, use_spectral_norm=False
|
|
):
|
|
super(WavLMDiscriminator, self).__init__()
|
|
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
|
self.pre = norm_f(
|
|
Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0)
|
|
)
|
|
|
|
self.convs = nn.ModuleList(
|
|
[
|
|
norm_f(
|
|
nn.Conv1d(
|
|
initial_channel, initial_channel * 2, kernel_size=5, padding=2
|
|
)
|
|
),
|
|
norm_f(
|
|
nn.Conv1d(
|
|
initial_channel * 2,
|
|
initial_channel * 4,
|
|
kernel_size=5,
|
|
padding=2,
|
|
)
|
|
),
|
|
norm_f(
|
|
nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)
|
|
),
|
|
]
|
|
)
|
|
|
|
self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
|
|
|
|
def forward(self, x):
|
|
x = self.pre(x)
|
|
|
|
fmap = []
|
|
for l in self.convs:
|
|
x = l(x)
|
|
x = F.leaky_relu(x, modules.LRELU_SLOPE)
|
|
fmap.append(x)
|
|
x = self.conv_post(x)
|
|
x = torch.flatten(x, 1, -1)
|
|
|
|
return x
|
|
|
|
|
|
class ReferenceEncoder(nn.Module):
|
|
"""
|
|
inputs --- [N, Ty/r, n_mels*r] mels
|
|
outputs --- [N, ref_enc_gru_size]
|
|
"""
|
|
|
|
def __init__(self, spec_channels, gin_channels=0):
|
|
super().__init__()
|
|
self.spec_channels = spec_channels
|
|
ref_enc_filters = [32, 32, 64, 64, 128, 128]
|
|
K = len(ref_enc_filters)
|
|
filters = [1] + ref_enc_filters
|
|
convs = [
|
|
weight_norm(
|
|
nn.Conv2d(
|
|
in_channels=filters[i],
|
|
out_channels=filters[i + 1],
|
|
kernel_size=(3, 3),
|
|
stride=(2, 2),
|
|
padding=(1, 1),
|
|
)
|
|
)
|
|
for i in range(K)
|
|
]
|
|
self.convs = nn.ModuleList(convs)
|
|
|
|
|
|
out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K)
|
|
self.gru = nn.GRU(
|
|
input_size=ref_enc_filters[-1] * out_channels,
|
|
hidden_size=256 // 2,
|
|
batch_first=True,
|
|
)
|
|
self.proj = nn.Linear(128, gin_channels)
|
|
|
|
def forward(self, inputs, mask=None):
|
|
N = inputs.size(0)
|
|
out = inputs.view(N, 1, -1, self.spec_channels)
|
|
for conv in self.convs:
|
|
out = conv(out)
|
|
|
|
out = F.relu(out)
|
|
|
|
out = out.transpose(1, 2)
|
|
T = out.size(1)
|
|
N = out.size(0)
|
|
out = out.contiguous().view(N, T, -1)
|
|
|
|
self.gru.flatten_parameters()
|
|
memory, out = self.gru(out)
|
|
|
|
return self.proj(out.squeeze(0))
|
|
|
|
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
|
|
for i in range(n_convs):
|
|
L = (L - kernel_size + 2 * pad) // stride + 1
|
|
return L
|
|
|
|
|
|
class SynthesizerTrn(nn.Module):
|
|
"""
|
|
Synthesizer for Training
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
n_vocab,
|
|
spec_channels,
|
|
segment_size,
|
|
inter_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
n_speakers=256,
|
|
gin_channels=256,
|
|
use_sdp=True,
|
|
n_flow_layer=4,
|
|
n_layers_trans_flow=6,
|
|
flow_share_parameter=False,
|
|
use_transformer_flow=True,
|
|
**kwargs
|
|
):
|
|
super().__init__()
|
|
self.n_vocab = n_vocab
|
|
self.spec_channels = spec_channels
|
|
self.inter_channels = inter_channels
|
|
self.hidden_channels = hidden_channels
|
|
self.filter_channels = filter_channels
|
|
self.n_heads = n_heads
|
|
self.n_layers = n_layers
|
|
self.kernel_size = kernel_size
|
|
self.p_dropout = p_dropout
|
|
self.resblock = resblock
|
|
self.resblock_kernel_sizes = resblock_kernel_sizes
|
|
self.resblock_dilation_sizes = resblock_dilation_sizes
|
|
self.upsample_rates = upsample_rates
|
|
self.upsample_initial_channel = upsample_initial_channel
|
|
self.upsample_kernel_sizes = upsample_kernel_sizes
|
|
self.segment_size = segment_size
|
|
self.n_speakers = n_speakers
|
|
self.gin_channels = gin_channels
|
|
self.n_layers_trans_flow = n_layers_trans_flow
|
|
self.use_spk_conditioned_encoder = kwargs.get(
|
|
"use_spk_conditioned_encoder", True
|
|
)
|
|
self.use_sdp = use_sdp
|
|
self.use_noise_scaled_mas = kwargs.get("use_noise_scaled_mas", False)
|
|
self.mas_noise_scale_initial = kwargs.get("mas_noise_scale_initial", 0.01)
|
|
self.noise_scale_delta = kwargs.get("noise_scale_delta", 2e-6)
|
|
self.current_mas_noise_scale = self.mas_noise_scale_initial
|
|
if self.use_spk_conditioned_encoder and gin_channels > 0:
|
|
self.enc_gin_channels = gin_channels
|
|
self.enc_p = TextEncoder(
|
|
n_vocab,
|
|
inter_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers,
|
|
kernel_size,
|
|
p_dropout,
|
|
gin_channels=self.enc_gin_channels,
|
|
)
|
|
self.dec = Generator(
|
|
inter_channels,
|
|
resblock,
|
|
resblock_kernel_sizes,
|
|
resblock_dilation_sizes,
|
|
upsample_rates,
|
|
upsample_initial_channel,
|
|
upsample_kernel_sizes,
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.enc_q = PosteriorEncoder(
|
|
spec_channels,
|
|
inter_channels,
|
|
hidden_channels,
|
|
5,
|
|
1,
|
|
16,
|
|
gin_channels=gin_channels,
|
|
)
|
|
if use_transformer_flow:
|
|
self.flow = TransformerCouplingBlock(
|
|
inter_channels,
|
|
hidden_channels,
|
|
filter_channels,
|
|
n_heads,
|
|
n_layers_trans_flow,
|
|
5,
|
|
p_dropout,
|
|
n_flow_layer,
|
|
gin_channels=gin_channels,
|
|
share_parameter=flow_share_parameter,
|
|
)
|
|
else:
|
|
self.flow = ResidualCouplingBlock(
|
|
inter_channels,
|
|
hidden_channels,
|
|
5,
|
|
1,
|
|
n_flow_layer,
|
|
gin_channels=gin_channels,
|
|
)
|
|
self.sdp = StochasticDurationPredictor(
|
|
hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels
|
|
)
|
|
self.dp = DurationPredictor(
|
|
hidden_channels, 256, 3, 0.5, gin_channels=gin_channels
|
|
)
|
|
|
|
if n_speakers >= 1:
|
|
self.emb_g = nn.Embedding(n_speakers, gin_channels)
|
|
else:
|
|
self.ref_enc = ReferenceEncoder(spec_channels, gin_channels)
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
x_lengths,
|
|
y,
|
|
y_lengths,
|
|
sid,
|
|
tone,
|
|
language,
|
|
bert,
|
|
style_vec,
|
|
):
|
|
if self.n_speakers > 0:
|
|
g = self.emb_g(sid).unsqueeze(-1)
|
|
else:
|
|
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
|
x, m_p, logs_p, x_mask = self.enc_p(
|
|
x, x_lengths, tone, language, bert, style_vec, g=g
|
|
)
|
|
z, m_q, logs_q, y_mask = self.enc_q(y, y_lengths, g=g)
|
|
z_p = self.flow(z, y_mask, g=g)
|
|
|
|
with torch.no_grad():
|
|
|
|
s_p_sq_r = torch.exp(-2 * logs_p)
|
|
neg_cent1 = torch.sum(
|
|
-0.5 * math.log(2 * math.pi) - logs_p, [1], keepdim=True
|
|
)
|
|
neg_cent2 = torch.matmul(
|
|
-0.5 * (z_p**2).transpose(1, 2), s_p_sq_r
|
|
)
|
|
neg_cent3 = torch.matmul(
|
|
z_p.transpose(1, 2), (m_p * s_p_sq_r)
|
|
)
|
|
neg_cent4 = torch.sum(
|
|
-0.5 * (m_p**2) * s_p_sq_r, [1], keepdim=True
|
|
)
|
|
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
|
|
if self.use_noise_scaled_mas:
|
|
epsilon = (
|
|
torch.std(neg_cent)
|
|
* torch.randn_like(neg_cent)
|
|
* self.current_mas_noise_scale
|
|
)
|
|
neg_cent = neg_cent + epsilon
|
|
|
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
|
attn = (
|
|
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
|
|
.unsqueeze(1)
|
|
.detach()
|
|
)
|
|
|
|
w = attn.sum(2)
|
|
|
|
l_length_sdp = self.sdp(x, x_mask, w, g=g)
|
|
l_length_sdp = l_length_sdp / torch.sum(x_mask)
|
|
|
|
logw_ = torch.log(w + 1e-6) * x_mask
|
|
logw = self.dp(x, x_mask, g=g)
|
|
|
|
l_length_dp = torch.sum((logw - logw_) ** 2, [1, 2]) / torch.sum(
|
|
x_mask
|
|
)
|
|
|
|
|
|
l_length = l_length_dp + l_length_sdp
|
|
|
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2)
|
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2)
|
|
|
|
z_slice, ids_slice = commons.rand_slice_segments(
|
|
z, y_lengths, self.segment_size
|
|
)
|
|
o = self.dec(z_slice, g=g)
|
|
return (
|
|
o,
|
|
l_length,
|
|
attn,
|
|
ids_slice,
|
|
x_mask,
|
|
y_mask,
|
|
(z, z_p, m_p, logs_p, m_q, logs_q),
|
|
(x, logw, logw_),
|
|
g,
|
|
)
|
|
|
|
def infer(
|
|
self,
|
|
x,
|
|
x_lengths,
|
|
sid,
|
|
tone,
|
|
language,
|
|
bert,
|
|
style_vec,
|
|
noise_scale=0.667,
|
|
length_scale=1,
|
|
noise_scale_w=0.8,
|
|
max_len=None,
|
|
sdp_ratio=0,
|
|
y=None,
|
|
):
|
|
|
|
|
|
if self.n_speakers > 0:
|
|
g = self.emb_g(sid).unsqueeze(-1)
|
|
else:
|
|
g = self.ref_enc(y.transpose(1, 2)).unsqueeze(-1)
|
|
x, m_p, logs_p, x_mask = self.enc_p(
|
|
x, x_lengths, tone, language, bert, style_vec, g=g
|
|
)
|
|
logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * (
|
|
sdp_ratio
|
|
) + self.dp(x, x_mask, g=g) * (1 - sdp_ratio)
|
|
w = torch.exp(logw) * x_mask * length_scale
|
|
w_ceil = torch.ceil(w)
|
|
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
|
|
y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(
|
|
x_mask.dtype
|
|
)
|
|
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
|
|
attn = commons.generate_path(w_ceil, attn_mask)
|
|
|
|
m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(
|
|
1, 2
|
|
)
|
|
logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(
|
|
1, 2
|
|
)
|
|
|
|
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
|
|
z = self.flow(z_p, y_mask, g=g, reverse=True)
|
|
o = self.dec((z * y_mask)[:, :, :max_len], g=g)
|
|
return o, attn, y_mask, (z, z_p, m_p, logs_p)
|
|
|