Spaces:
Sleeping
Sleeping
File size: 13,270 Bytes
4aee695 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 |
import shutil
import os
# def copy_files(source_folder, destination_folder):
# # Create the destination folder if it doesn't exist
# if not os.path.exists(destination_folder):
# os.makedirs(destination_folder)
# # Get a list of files in the source folder
# files_to_copy = os.listdir(source_folder)
# for file_name in files_to_copy:
# source_file_path = os.path.join(source_folder, file_name)
# destination_file_path = os.path.join(destination_folder, file_name)
# # Copy the file to the destination folder
# shutil.copy(source_file_path, destination_file_path)
# print(f"Copied {file_name} to {destination_folder}")
# # Specify the source folder and destination folder paths
# source_folder = "/kaggle/input/fiver-app5210"
# destination_folder = "/local_db"
# copy_files(source_folder, destination_folder)
# def copy_files(source_folder, destination_folder):
# # Create the destination folder if it doesn't exist
# if not os.path.exists(destination_folder):
# os.makedirs(destination_folder)
# # Get a list of files in the source folder
# files_to_copy = os.listdir(source_folder)
# for file_name in files_to_copy:
# source_file_path = os.path.join(source_folder, file_name)
# destination_file_path = os.path.join(destination_folder, file_name)
# # Copy the file to the destination folder
# shutil.copy(source_file_path, destination_file_path)
# print(f"Copied {file_name} to {destination_folder}")
# # Specify the source folder and destination folder paths
# source_folder = "/kaggle/input/fiver-app-docs"
# destination_folder = "/docs"
# copy_files(source_folder, destination_folder)
import os
import openai
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"]
def api_key(key):
import os
import openai
os.environ["TOKENIZERS_PARALLELISM"] = "false"
os.environ["OPENAI_API_KEY"] = key
openai.api_key = key
return "Successful!"
def save_file(input_file):
import shutil
import os
destination_dir = "/home/user/app/file/"
os.makedirs(destination_dir, exist_ok=True)
output_dir="/home/user/app/file/"
for file in input_file:
shutil.copy(file.name, output_dir)
return "File(s) saved successfully!"
def process_file():
from langchain.document_loaders import PyPDFLoader
from langchain.document_loaders import DirectoryLoader
from langchain.document_loaders import TextLoader
from langchain.document_loaders import Docx2txtLoader
from langchain.vectorstores import FAISS
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import CharacterTextSplitter
import openai
loader1 = DirectoryLoader('/home/user/app/file/', glob="./*.pdf", loader_cls=PyPDFLoader)
document1 = loader1.load()
loader2 = DirectoryLoader('/home/user/app/file/', glob="./*.txt", loader_cls=TextLoader)
document2 = loader2.load()
loader3 = DirectoryLoader('/home/user/app/file/', glob="./*.docx", loader_cls=Docx2txtLoader)
document3 = loader3.load()
document1.extend(document2)
document1.extend(document3)
text_splitter = CharacterTextSplitter(
separator="\n",
chunk_size=1000,
chunk_overlap=200,
length_function=len)
docs = text_splitter.split_documents(document1)
embeddings = OpenAIEmbeddings()
file_db = FAISS.from_documents(docs, embeddings)
file_db.save_local("/home/user/app/file_db/")
return "File(s) processed successfully!"
def formatted_response(docs, response):
formatted_output = response + "\n\nSources"
for i, doc in enumerate(docs):
source_info = doc.metadata.get('source', 'Unknown source')
page_info = doc.metadata.get('page', None)
# Get the file name without the directory path
file_name = source_info.split('/')[-1].strip()
if page_info is not None:
formatted_output += f"\n{file_name}\tpage no {page_info}"
else:
formatted_output += f"\n{file_name}"
return formatted_output
def search_file(question):
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import openai
from langchain.chat_models import ChatOpenAI
embeddings = OpenAIEmbeddings()
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
docs = file_db.similarity_search(question)
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=question)
print(cb)
return formatted_response(docs, response)
def search_local(question):
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.callbacks import get_openai_callback
from langchain.llms import OpenAI
import openai
from langchain.chat_models import ChatOpenAI
embeddings = OpenAIEmbeddings()
file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
docs = file_db.similarity_search(question)
print(docs)
type(docs)
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
chain = load_qa_chain(llm, chain_type="stuff")
with get_openai_callback() as cb:
response = chain.run(input_documents=docs, question=question)
print(cb)
return formatted_response(docs, response)
def delete_file():
import shutil
path1 = "/home/user/app/file/"
path2 = "/home/user/app/file_db/"
try:
shutil.rmtree(path1)
shutil.rmtree(path2)
return "Deleted Successfully"
except:
return "Already Deleted"
import os
def list_files_in_directory(directory):
file_list = []
for root, dirs, files in os.walk(directory):
for file in files:
file_list.append(file)
return file_list
directory_path = '/home/user/app/docs'
file_list = list_files_in_directory(directory_path)
print("List of file names in the directory:")
for file_name in file_list:
print(file_name)
def soap_report(doc_name, question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
import openai
import docx
docx_path = '/home/user/app/docs/'+doc_name
doc = docx.Document(docx_path)
extracted_text = 'Extracted text:\n\n\n'
for paragraph in doc.paragraphs:
extracted_text += paragraph.text + '\n'
question = "\n\nUse the 'Extracted text' to answer the following question:\n" + question
extracted_text += question
if extracted_text:
print(extracted_text)
else:
print("failed")
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(extracted_text)
return response
def search_gpt(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
def local_gpt(question):
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
global output
global response
def audio_text(filepath):
import openai
global output
audio = open(filepath, "rb")
transcript = openai.Audio.transcribe("whisper-1", audio)
output = transcript["text"]
return output
def text_soap():
from langchain.llms import OpenAI
from langchain import PromptTemplate, LLMChain
global output
global response
output = output
question = "Use the following context given below to generate a detailed SOAP Report:\n\n"
question += output
print(question)
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate(template=template, input_variables=["question"])
llm = OpenAI()
llm_chain = LLMChain(prompt=prompt, llm=llm)
response = llm_chain.run(question)
return response
def docx(name):
global response
response = response
import docx
path = f"/home/user/app/docs/{name}.docx"
doc = docx.Document()
doc.add_paragraph(response)
doc.save(path)
return "Successfully saved .docx File"
import gradio as gr
css = """
.col{
max-width: 50%;
margin: 0 auto;
display: flex;
flex-direction: column;
justify-content: center;
align-items: center;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("File Chatting App")
with gr.Tab("Chat with your Files"):
with gr.Column(elem_classes="col"):
with gr.Tab("Upload and Process your Files"):
with gr.Column():
api_key_input = gr.Textbox(label="Enter your API Key here")
api_key_button = gr.Button("Submit")
api_key_output = gr.Textbox(label="Output")
file_input = gr.Files(label="Upload your File(s) here")
upload_button = gr.Button("Upload")
file_output = gr.Textbox(label="Output")
process_button = gr.Button("Process")
process_output = gr.Textbox(label="Output")
with gr.Tab("Ask Questions to your Files"):
with gr.Column():
search_input = gr.Textbox(label="Enter your Question here")
search_button = gr.Button("Search")
search_output = gr.Textbox(label="Output")
search_gpt_button = gr.Button("Ask ChatGPT")
search_gpt_output = gr.Textbox(label="Output")
delete_button = gr.Button("Delete")
delete_output = gr.Textbox(label="Output")
with gr.Tab("Chat with your Local Files"):
with gr.Column(elem_classes="col"):
local_search_input = gr.Textbox(label="Enter your Question here")
local_search_button = gr.Button("Search")
local_search_output = gr.Textbox(label="Output")
local_gpt_button = gr.Button("Ask ChatGPT")
local_gpt_output = gr.Textbox(label="Output")
with gr.Tab("Ask Question to SOAP Report"):
with gr.Column(elem_classes="col"):
soap_input = gr.Dropdown(choices=file_list, label="Choose File")
soap_question = gr.Textbox(label="Enter your Question here")
soap_button = gr.Button("Submit")
soap_output = gr.Textbox(label="Output")
with gr.Tab("Convert Audio to SOAP Report"):
with gr.Column(elem_classes="col"):
audio_text_input = gr.Audio(source="microphone", type="filepath", label="Upload your Audio File here")
audio_text_button = gr.Button("Generate Transcript")
audio_text_output = gr.Textbox(label="Output")
text_soap_button = gr.Button("Generate SOAP Report")
text_soap_output = gr.Textbox(label="Output")
docx_input = gr.Textbox(label="Enter the Name of .docx File")
docx_button = gr.Button("Save .docx File")
docx_output = gr.Textbox(label="Output")
api_key_button.click(api_key, inputs=api_key_input, outputs=api_key_output)
upload_button.click(save_file, inputs=file_input, outputs=file_output)
process_button.click(process_file, inputs=None, outputs=process_output)
search_button.click(search_file, inputs=search_input, outputs=search_output)
search_gpt_button.click(search_gpt, inputs=search_input, outputs=search_gpt_output)
delete_button.click(delete_file, inputs=None, outputs=delete_output)
local_search_button.click(search_local, inputs=local_search_input, outputs=local_search_output)
local_gpt_button.click(local_gpt, inputs=local_search_input, outputs=local_gpt_output)
soap_button.click(soap_report, inputs=[soap_input, soap_question], outputs=soap_output)
audio_text_button.click(audio_text, inputs=audio_text_input, outputs=audio_text_output)
text_soap_button.click(text_soap, inputs=None, outputs=text_soap_output)
audio_text_button.click(audio_text, inputs=audio_text_input, outputs=audio_text_output)
text_soap_button.click(text_soap, inputs=None, outputs=text_soap_output)
docx_button.click(docx, inputs=docx_input, outputs=docx_output)
demo.queue()
demo.launch()
# # Commented out IPython magic to ensure Python compatibility.
# #download file_db
# # %cd /kaggle/working/
# !zip -r "file_db.zip" "file_db"
# from IPython.display import FileLink
# FileLink("file_db.zip") |