Spaces:
Sleeping
Sleeping
AbeerTrial
commited on
Commit
·
0a3a31f
1
Parent(s):
ca6b840
Upload app.py
Browse files
app.py
CHANGED
@@ -74,15 +74,8 @@
|
|
74 |
|
75 |
# copy_files(source_folder, destination_folder)
|
76 |
|
77 |
-
import os
|
78 |
-
import openai
|
79 |
-
|
80 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
81 |
-
os.environ["OPENAI_API_KEY"] = "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"
|
82 |
-
openai.api_key = "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"
|
83 |
|
84 |
def api_key(key):
|
85 |
-
|
86 |
import os
|
87 |
import openai
|
88 |
|
@@ -92,6 +85,7 @@ def api_key(key):
|
|
92 |
|
93 |
return "Successful!"
|
94 |
|
|
|
95 |
def save_file(input_file):
|
96 |
import shutil
|
97 |
import os
|
@@ -99,13 +93,14 @@ def save_file(input_file):
|
|
99 |
destination_dir = "/home/user/app/file/"
|
100 |
os.makedirs(destination_dir, exist_ok=True)
|
101 |
|
102 |
-
output_dir="/home/user/app/file/"
|
103 |
|
104 |
for file in input_file:
|
105 |
-
|
106 |
|
107 |
return "File(s) saved successfully!"
|
108 |
|
|
|
109 |
def process_file():
|
110 |
from langchain.document_loaders import PyPDFLoader
|
111 |
from langchain.document_loaders import DirectoryLoader
|
@@ -116,23 +111,27 @@ def process_file():
|
|
116 |
from langchain.text_splitter import CharacterTextSplitter
|
117 |
import openai
|
118 |
|
119 |
-
loader1 = DirectoryLoader(
|
|
|
|
|
120 |
document1 = loader1.load()
|
121 |
|
122 |
-
loader2 = DirectoryLoader(
|
|
|
|
|
123 |
document2 = loader2.load()
|
124 |
|
125 |
-
loader3 = DirectoryLoader(
|
|
|
|
|
126 |
document3 = loader3.load()
|
127 |
|
128 |
document1.extend(document2)
|
129 |
document1.extend(document3)
|
130 |
|
131 |
text_splitter = CharacterTextSplitter(
|
132 |
-
separator="\n",
|
133 |
-
|
134 |
-
chunk_overlap=200,
|
135 |
-
length_function=len)
|
136 |
|
137 |
docs = text_splitter.split_documents(document1)
|
138 |
embeddings = OpenAIEmbeddings()
|
@@ -142,15 +141,16 @@ def process_file():
|
|
142 |
|
143 |
return "File(s) processed successfully!"
|
144 |
|
|
|
145 |
def formatted_response(docs, response):
|
146 |
formatted_output = response + "\n\nSources"
|
147 |
|
148 |
for i, doc in enumerate(docs):
|
149 |
-
source_info = doc.metadata.get(
|
150 |
-
page_info = doc.metadata.get(
|
151 |
|
152 |
# Get the file name without the directory path
|
153 |
-
file_name = source_info.split(
|
154 |
|
155 |
if page_info is not None:
|
156 |
formatted_output += f"\n{file_name}\tpage no {page_info}"
|
@@ -159,6 +159,7 @@ def formatted_response(docs, response):
|
|
159 |
|
160 |
return formatted_output
|
161 |
|
|
|
162 |
def search_file(question):
|
163 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
164 |
from langchain.vectorstores import FAISS
|
@@ -167,11 +168,12 @@ def search_file(question):
|
|
167 |
from langchain.llms import OpenAI
|
168 |
import openai
|
169 |
from langchain.chat_models import ChatOpenAI
|
|
|
170 |
embeddings = OpenAIEmbeddings()
|
171 |
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
|
172 |
docs = file_db.similarity_search(question)
|
173 |
|
174 |
-
llm = ChatOpenAI(model_name=
|
175 |
chain = load_qa_chain(llm, chain_type="stuff")
|
176 |
with get_openai_callback() as cb:
|
177 |
response = chain.run(input_documents=docs, question=question)
|
@@ -179,6 +181,7 @@ def search_file(question):
|
|
179 |
|
180 |
return formatted_response(docs, response)
|
181 |
|
|
|
182 |
def search_local(question):
|
183 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
184 |
from langchain.vectorstores import FAISS
|
@@ -187,13 +190,14 @@ def search_local(question):
|
|
187 |
from langchain.llms import OpenAI
|
188 |
import openai
|
189 |
from langchain.chat_models import ChatOpenAI
|
|
|
190 |
embeddings = OpenAIEmbeddings()
|
191 |
file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
|
192 |
docs = file_db.similarity_search(question)
|
193 |
|
194 |
print(docs)
|
195 |
type(docs)
|
196 |
-
llm = ChatOpenAI(model_name=
|
197 |
chain = load_qa_chain(llm, chain_type="stuff")
|
198 |
with get_openai_callback() as cb:
|
199 |
response = chain.run(input_documents=docs, question=question)
|
@@ -201,8 +205,8 @@ def search_local(question):
|
|
201 |
|
202 |
return formatted_response(docs, response)
|
203 |
|
204 |
-
def delete_file():
|
205 |
|
|
|
206 |
import shutil
|
207 |
|
208 |
path1 = "/home/user/app/file/"
|
@@ -216,38 +220,44 @@ def delete_file():
|
|
216 |
except:
|
217 |
return "Already Deleted"
|
218 |
|
|
|
219 |
import os
|
220 |
import gradio as gr
|
221 |
|
|
|
222 |
def list_files():
|
223 |
-
directory =
|
224 |
file_list = []
|
225 |
for root, dirs, files in os.walk(directory):
|
226 |
for file in files:
|
227 |
file_list.append(file)
|
228 |
return gr.Dropdown.update(choices=file_list)
|
229 |
|
|
|
230 |
file_list = list_files()
|
231 |
|
232 |
print("List of file names in the directory:")
|
233 |
for file_name in file_list:
|
234 |
print(file_name)
|
235 |
|
|
|
236 |
def soap_report(doc_name, question):
|
237 |
from langchain.llms import OpenAI
|
238 |
from langchain import PromptTemplate, LLMChain
|
239 |
import openai
|
240 |
import docx
|
241 |
|
242 |
-
docx_path =
|
243 |
|
244 |
doc = docx.Document(docx_path)
|
245 |
-
extracted_text =
|
246 |
|
247 |
for paragraph in doc.paragraphs:
|
248 |
-
extracted_text += paragraph.text +
|
249 |
|
250 |
-
question =
|
|
|
|
|
251 |
extracted_text += question
|
252 |
|
253 |
if extracted_text:
|
@@ -266,6 +276,7 @@ def soap_report(doc_name, question):
|
|
266 |
|
267 |
return response
|
268 |
|
|
|
269 |
def search_gpt(question):
|
270 |
from langchain.llms import OpenAI
|
271 |
from langchain import PromptTemplate, LLMChain
|
@@ -281,6 +292,7 @@ def search_gpt(question):
|
|
281 |
|
282 |
return response
|
283 |
|
|
|
284 |
def local_gpt(question):
|
285 |
from langchain.llms import OpenAI
|
286 |
from langchain import PromptTemplate, LLMChain
|
@@ -296,11 +308,14 @@ def local_gpt(question):
|
|
296 |
|
297 |
return response
|
298 |
|
|
|
299 |
global output
|
300 |
global response
|
301 |
|
|
|
302 |
def audio_text(filepath):
|
303 |
import openai
|
|
|
304 |
global output
|
305 |
|
306 |
audio = open(filepath, "rb")
|
@@ -309,12 +324,16 @@ def audio_text(filepath):
|
|
309 |
|
310 |
return output
|
311 |
|
|
|
312 |
def transcript(text):
|
313 |
from langchain.llms import OpenAI
|
314 |
from langchain import PromptTemplate, LLMChain
|
|
|
315 |
global response
|
316 |
|
317 |
-
question =
|
|
|
|
|
318 |
question += text
|
319 |
print(question)
|
320 |
|
@@ -329,14 +348,18 @@ def transcript(text):
|
|
329 |
|
330 |
return response
|
331 |
|
|
|
332 |
def text_soap():
|
333 |
from langchain.llms import OpenAI
|
334 |
from langchain import PromptTemplate, LLMChain
|
|
|
335 |
global output
|
336 |
global response
|
337 |
output = output
|
338 |
|
339 |
-
question =
|
|
|
|
|
340 |
question += output
|
341 |
print(question)
|
342 |
|
@@ -351,12 +374,15 @@ def text_soap():
|
|
351 |
|
352 |
return response
|
353 |
|
|
|
354 |
global path
|
355 |
|
|
|
356 |
def docx(name):
|
357 |
global response
|
358 |
response = response
|
359 |
import docx
|
|
|
360 |
global path
|
361 |
path = f"/home/user/app/docs/{name}.docx"
|
362 |
|
@@ -366,6 +392,7 @@ def docx(name):
|
|
366 |
|
367 |
return "Successfully saved .docx File"
|
368 |
|
|
|
369 |
import gradio as gr
|
370 |
|
371 |
css = """
|
@@ -383,76 +410,73 @@ with gr.Blocks(css=css) as demo:
|
|
383 |
gr.Markdown("File Chatting App")
|
384 |
|
385 |
with gr.Tab("Chat with Files"):
|
386 |
-
|
|
|
|
|
|
|
|
|
|
|
387 |
|
388 |
-
|
389 |
-
|
|
|
390 |
|
391 |
-
|
392 |
-
|
393 |
-
api_key_output = gr.Textbox(label="Output")
|
394 |
|
395 |
-
|
396 |
-
|
397 |
-
|
|
|
|
|
398 |
|
399 |
-
|
400 |
-
|
401 |
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
search_input = gr.Textbox(label="Enter Question here")
|
406 |
-
search_button = gr.Button("Search")
|
407 |
-
search_output = gr.Textbox(label="Output")
|
408 |
-
|
409 |
-
search_gpt_button = gr.Button("Ask ChatGPT")
|
410 |
-
search_gpt_output = gr.Textbox(label="Output")
|
411 |
-
|
412 |
-
delete_button = gr.Button("Delete")
|
413 |
-
delete_output = gr.Textbox(label="Output")
|
414 |
|
415 |
with gr.Tab("Chat with Local Files"):
|
416 |
-
|
|
|
|
|
|
|
417 |
|
418 |
-
|
419 |
-
|
420 |
-
local_search_output = gr.Textbox(label="Output")
|
421 |
-
|
422 |
-
local_gpt_button = gr.Button("Ask ChatGPT")
|
423 |
-
local_gpt_output = gr.Textbox(label="Output")
|
424 |
|
425 |
with gr.Tab("Ask Question to SOAP Report"):
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
soap_output = gr.Textbox(label="Output")
|
433 |
|
434 |
with gr.Tab("Convert Audio to SOAP Report"):
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
|
|
|
|
456 |
|
457 |
api_key_button.click(api_key, inputs=api_key_input, outputs=api_key_output)
|
458 |
|
@@ -465,30 +489,29 @@ with gr.Blocks(css=css) as demo:
|
|
465 |
|
466 |
delete_button.click(delete_file, inputs=None, outputs=delete_output)
|
467 |
|
468 |
-
local_search_button.click(
|
469 |
-
|
|
|
|
|
|
|
|
|
470 |
|
471 |
refresh_button.click(list_files, inputs=None, outputs=soap_input)
|
472 |
-
soap_button.click(
|
|
|
|
|
473 |
|
474 |
mic_text_button.click(audio_text, inputs=mic_text_input, outputs=mic_text_output)
|
475 |
-
upload_text_button.click(
|
|
|
|
|
476 |
|
477 |
-
transcript_button.click(
|
|
|
|
|
478 |
text_soap_button.click(text_soap, inputs=None, outputs=text_soap_output)
|
479 |
docx_button.click(docx, inputs=docx_input, outputs=docx_output)
|
480 |
|
481 |
|
482 |
demo.queue()
|
483 |
-
demo.launch(
|
484 |
-
|
485 |
-
|
486 |
-
# Commented out IPython magic to ensure Python compatibility.
|
487 |
-
#download file_db
|
488 |
-
|
489 |
-
# %cd /home/user/app/
|
490 |
-
|
491 |
-
!zip -r "file_db.zip" "file_db"
|
492 |
-
|
493 |
-
from IPython.display import FileLink
|
494 |
-
FileLink("file_db.zip")
|
|
|
74 |
|
75 |
# copy_files(source_folder, destination_folder)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def api_key(key):
|
|
|
79 |
import os
|
80 |
import openai
|
81 |
|
|
|
85 |
|
86 |
return "Successful!"
|
87 |
|
88 |
+
|
89 |
def save_file(input_file):
|
90 |
import shutil
|
91 |
import os
|
|
|
93 |
destination_dir = "/home/user/app/file/"
|
94 |
os.makedirs(destination_dir, exist_ok=True)
|
95 |
|
96 |
+
output_dir = "/home/user/app/file/"
|
97 |
|
98 |
for file in input_file:
|
99 |
+
shutil.copy(file.name, output_dir)
|
100 |
|
101 |
return "File(s) saved successfully!"
|
102 |
|
103 |
+
|
104 |
def process_file():
|
105 |
from langchain.document_loaders import PyPDFLoader
|
106 |
from langchain.document_loaders import DirectoryLoader
|
|
|
111 |
from langchain.text_splitter import CharacterTextSplitter
|
112 |
import openai
|
113 |
|
114 |
+
loader1 = DirectoryLoader(
|
115 |
+
"/home/user/app/file/", glob="./*.pdf", loader_cls=PyPDFLoader
|
116 |
+
)
|
117 |
document1 = loader1.load()
|
118 |
|
119 |
+
loader2 = DirectoryLoader(
|
120 |
+
"/home/user/app/file/", glob="./*.txt", loader_cls=TextLoader
|
121 |
+
)
|
122 |
document2 = loader2.load()
|
123 |
|
124 |
+
loader3 = DirectoryLoader(
|
125 |
+
"/home/user/app/file/", glob="./*.docx", loader_cls=Docx2txtLoader
|
126 |
+
)
|
127 |
document3 = loader3.load()
|
128 |
|
129 |
document1.extend(document2)
|
130 |
document1.extend(document3)
|
131 |
|
132 |
text_splitter = CharacterTextSplitter(
|
133 |
+
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
|
134 |
+
)
|
|
|
|
|
135 |
|
136 |
docs = text_splitter.split_documents(document1)
|
137 |
embeddings = OpenAIEmbeddings()
|
|
|
141 |
|
142 |
return "File(s) processed successfully!"
|
143 |
|
144 |
+
|
145 |
def formatted_response(docs, response):
|
146 |
formatted_output = response + "\n\nSources"
|
147 |
|
148 |
for i, doc in enumerate(docs):
|
149 |
+
source_info = doc.metadata.get("source", "Unknown source")
|
150 |
+
page_info = doc.metadata.get("page", None)
|
151 |
|
152 |
# Get the file name without the directory path
|
153 |
+
file_name = source_info.split("/")[-1].strip()
|
154 |
|
155 |
if page_info is not None:
|
156 |
formatted_output += f"\n{file_name}\tpage no {page_info}"
|
|
|
159 |
|
160 |
return formatted_output
|
161 |
|
162 |
+
|
163 |
def search_file(question):
|
164 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
165 |
from langchain.vectorstores import FAISS
|
|
|
168 |
from langchain.llms import OpenAI
|
169 |
import openai
|
170 |
from langchain.chat_models import ChatOpenAI
|
171 |
+
|
172 |
embeddings = OpenAIEmbeddings()
|
173 |
file_db = FAISS.load_local("/home/user/app/file_db/", embeddings)
|
174 |
docs = file_db.similarity_search(question)
|
175 |
|
176 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
177 |
chain = load_qa_chain(llm, chain_type="stuff")
|
178 |
with get_openai_callback() as cb:
|
179 |
response = chain.run(input_documents=docs, question=question)
|
|
|
181 |
|
182 |
return formatted_response(docs, response)
|
183 |
|
184 |
+
|
185 |
def search_local(question):
|
186 |
from langchain.embeddings.openai import OpenAIEmbeddings
|
187 |
from langchain.vectorstores import FAISS
|
|
|
190 |
from langchain.llms import OpenAI
|
191 |
import openai
|
192 |
from langchain.chat_models import ChatOpenAI
|
193 |
+
|
194 |
embeddings = OpenAIEmbeddings()
|
195 |
file_db = FAISS.load_local("/home/user/app/local_db/", embeddings)
|
196 |
docs = file_db.similarity_search(question)
|
197 |
|
198 |
print(docs)
|
199 |
type(docs)
|
200 |
+
llm = ChatOpenAI(model_name="gpt-3.5-turbo")
|
201 |
chain = load_qa_chain(llm, chain_type="stuff")
|
202 |
with get_openai_callback() as cb:
|
203 |
response = chain.run(input_documents=docs, question=question)
|
|
|
205 |
|
206 |
return formatted_response(docs, response)
|
207 |
|
|
|
208 |
|
209 |
+
def delete_file():
|
210 |
import shutil
|
211 |
|
212 |
path1 = "/home/user/app/file/"
|
|
|
220 |
except:
|
221 |
return "Already Deleted"
|
222 |
|
223 |
+
|
224 |
import os
|
225 |
import gradio as gr
|
226 |
|
227 |
+
|
228 |
def list_files():
|
229 |
+
directory = "/home/user/app/docs"
|
230 |
file_list = []
|
231 |
for root, dirs, files in os.walk(directory):
|
232 |
for file in files:
|
233 |
file_list.append(file)
|
234 |
return gr.Dropdown.update(choices=file_list)
|
235 |
|
236 |
+
|
237 |
file_list = list_files()
|
238 |
|
239 |
print("List of file names in the directory:")
|
240 |
for file_name in file_list:
|
241 |
print(file_name)
|
242 |
|
243 |
+
|
244 |
def soap_report(doc_name, question):
|
245 |
from langchain.llms import OpenAI
|
246 |
from langchain import PromptTemplate, LLMChain
|
247 |
import openai
|
248 |
import docx
|
249 |
|
250 |
+
docx_path = "/home/user/app/docs/" + doc_name
|
251 |
|
252 |
doc = docx.Document(docx_path)
|
253 |
+
extracted_text = "Extracted text:\n\n\n"
|
254 |
|
255 |
for paragraph in doc.paragraphs:
|
256 |
+
extracted_text += paragraph.text + "\n"
|
257 |
|
258 |
+
question = (
|
259 |
+
"\n\nUse the 'Extracted text' to answer the following question:\n" + question
|
260 |
+
)
|
261 |
extracted_text += question
|
262 |
|
263 |
if extracted_text:
|
|
|
276 |
|
277 |
return response
|
278 |
|
279 |
+
|
280 |
def search_gpt(question):
|
281 |
from langchain.llms import OpenAI
|
282 |
from langchain import PromptTemplate, LLMChain
|
|
|
292 |
|
293 |
return response
|
294 |
|
295 |
+
|
296 |
def local_gpt(question):
|
297 |
from langchain.llms import OpenAI
|
298 |
from langchain import PromptTemplate, LLMChain
|
|
|
308 |
|
309 |
return response
|
310 |
|
311 |
+
|
312 |
global output
|
313 |
global response
|
314 |
|
315 |
+
|
316 |
def audio_text(filepath):
|
317 |
import openai
|
318 |
+
|
319 |
global output
|
320 |
|
321 |
audio = open(filepath, "rb")
|
|
|
324 |
|
325 |
return output
|
326 |
|
327 |
+
|
328 |
def transcript(text):
|
329 |
from langchain.llms import OpenAI
|
330 |
from langchain import PromptTemplate, LLMChain
|
331 |
+
|
332 |
global response
|
333 |
|
334 |
+
question = (
|
335 |
+
"Use the following context given below to generate a detailed SOAP Report:\n\n"
|
336 |
+
)
|
337 |
question += text
|
338 |
print(question)
|
339 |
|
|
|
348 |
|
349 |
return response
|
350 |
|
351 |
+
|
352 |
def text_soap():
|
353 |
from langchain.llms import OpenAI
|
354 |
from langchain import PromptTemplate, LLMChain
|
355 |
+
|
356 |
global output
|
357 |
global response
|
358 |
output = output
|
359 |
|
360 |
+
question = (
|
361 |
+
"Use the following context given below to generate a detailed SOAP Report:\n\n"
|
362 |
+
)
|
363 |
question += output
|
364 |
print(question)
|
365 |
|
|
|
374 |
|
375 |
return response
|
376 |
|
377 |
+
|
378 |
global path
|
379 |
|
380 |
+
|
381 |
def docx(name):
|
382 |
global response
|
383 |
response = response
|
384 |
import docx
|
385 |
+
|
386 |
global path
|
387 |
path = f"/home/user/app/docs/{name}.docx"
|
388 |
|
|
|
392 |
|
393 |
return "Successfully saved .docx File"
|
394 |
|
395 |
+
|
396 |
import gradio as gr
|
397 |
|
398 |
css = """
|
|
|
410 |
gr.Markdown("File Chatting App")
|
411 |
|
412 |
with gr.Tab("Chat with Files"):
|
413 |
+
with gr.Column(elem_classes="col"):
|
414 |
+
with gr.Tab("Upload and Process Files"):
|
415 |
+
with gr.Column():
|
416 |
+
api_key_input = gr.Textbox(label="Enter API Key here")
|
417 |
+
api_key_button = gr.Button("Submit")
|
418 |
+
api_key_output = gr.Textbox(label="Output")
|
419 |
|
420 |
+
file_input = gr.Files(label="Upload File(s) here")
|
421 |
+
upload_button = gr.Button("Upload")
|
422 |
+
file_output = gr.Textbox(label="Output")
|
423 |
|
424 |
+
process_button = gr.Button("Process")
|
425 |
+
process_output = gr.Textbox(label="Output")
|
|
|
426 |
|
427 |
+
with gr.Tab("Ask Questions to Files"):
|
428 |
+
with gr.Column():
|
429 |
+
search_input = gr.Textbox(label="Enter Question here")
|
430 |
+
search_button = gr.Button("Search")
|
431 |
+
search_output = gr.Textbox(label="Output")
|
432 |
|
433 |
+
search_gpt_button = gr.Button("Ask ChatGPT")
|
434 |
+
search_gpt_output = gr.Textbox(label="Output")
|
435 |
|
436 |
+
delete_button = gr.Button("Delete")
|
437 |
+
delete_output = gr.Textbox(label="Output")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
|
439 |
with gr.Tab("Chat with Local Files"):
|
440 |
+
with gr.Column(elem_classes="col"):
|
441 |
+
local_search_input = gr.Textbox(label="Enter Question here")
|
442 |
+
local_search_button = gr.Button("Search")
|
443 |
+
local_search_output = gr.Textbox(label="Output")
|
444 |
|
445 |
+
local_gpt_button = gr.Button("Ask ChatGPT")
|
446 |
+
local_gpt_output = gr.Textbox(label="Output")
|
|
|
|
|
|
|
|
|
447 |
|
448 |
with gr.Tab("Ask Question to SOAP Report"):
|
449 |
+
with gr.Column(elem_classes="col"):
|
450 |
+
refresh_button = gr.Button("Refresh")
|
451 |
+
soap_input = gr.Dropdown(label="Choose File")
|
452 |
+
soap_question = gr.Textbox(label="Enter Question here")
|
453 |
+
soap_button = gr.Button("Submit")
|
454 |
+
soap_output = gr.Textbox(label="Output")
|
|
|
455 |
|
456 |
with gr.Tab("Convert Audio to SOAP Report"):
|
457 |
+
with gr.Column(elem_classes="col"):
|
458 |
+
mic_text_input = gr.Audio(
|
459 |
+
source="microphone", type="filepath", label="Speak to the Microphone"
|
460 |
+
)
|
461 |
+
mic_text_button = gr.Button("Generate Transcript")
|
462 |
+
mic_text_output = gr.Textbox(label="Output")
|
463 |
+
|
464 |
+
upload_text_input = gr.Audio(
|
465 |
+
source="upload", type="filepath", label="Upload Audio File here"
|
466 |
+
)
|
467 |
+
upload_text_button = gr.Button("Generate Transcript")
|
468 |
+
upload_text_output = gr.Textbox(label="Output")
|
469 |
+
|
470 |
+
transcript_input = gr.Textbox(label="Enter Transcript here")
|
471 |
+
transcript_button = gr.Button("Generate SOAP Report")
|
472 |
+
transcript_output = gr.Textbox(label="Output")
|
473 |
+
|
474 |
+
text_soap_button = gr.Button("Generate SOAP Report")
|
475 |
+
text_soap_output = gr.Textbox(label="Output")
|
476 |
+
|
477 |
+
docx_input = gr.Textbox(label="Enter the name of .docx File")
|
478 |
+
docx_button = gr.Button("Save .docx File")
|
479 |
+
docx_output = gr.Textbox(label="Output")
|
480 |
|
481 |
api_key_button.click(api_key, inputs=api_key_input, outputs=api_key_output)
|
482 |
|
|
|
489 |
|
490 |
delete_button.click(delete_file, inputs=None, outputs=delete_output)
|
491 |
|
492 |
+
local_search_button.click(
|
493 |
+
search_local, inputs=local_search_input, outputs=local_search_output
|
494 |
+
)
|
495 |
+
local_gpt_button.click(
|
496 |
+
local_gpt, inputs=local_search_input, outputs=local_gpt_output
|
497 |
+
)
|
498 |
|
499 |
refresh_button.click(list_files, inputs=None, outputs=soap_input)
|
500 |
+
soap_button.click(
|
501 |
+
soap_report, inputs=[soap_input, soap_question], outputs=soap_output
|
502 |
+
)
|
503 |
|
504 |
mic_text_button.click(audio_text, inputs=mic_text_input, outputs=mic_text_output)
|
505 |
+
upload_text_button.click(
|
506 |
+
audio_text, inputs=upload_text_input, outputs=upload_text_output
|
507 |
+
)
|
508 |
|
509 |
+
transcript_button.click(
|
510 |
+
transcript, inputs=transcript_input, outputs=transcript_output
|
511 |
+
)
|
512 |
text_soap_button.click(text_soap, inputs=None, outputs=text_soap_output)
|
513 |
docx_button.click(docx, inputs=docx_input, outputs=docx_output)
|
514 |
|
515 |
|
516 |
demo.queue()
|
517 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|