Update app.py
Browse files
app.py
CHANGED
@@ -1,54 +1,36 @@
|
|
1 |
-
import
|
2 |
-
import io, os, stat
|
3 |
-
import subprocess
|
4 |
-
import random
|
5 |
-
from zipfile import ZipFile
|
6 |
import uuid
|
7 |
import time
|
8 |
import torch
|
|
|
9 |
import torchaudio
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
os.system('python -m unidic download')
|
14 |
-
|
15 |
-
# By using XTTS you agree to CPML license https://coqui.ai/cpml
|
16 |
-
os.environ["COQUI_TOS_AGREED"] = "1"
|
17 |
-
|
18 |
-
# langid is used to detect language for longer text
|
19 |
-
# Most users expect text to be their own language, there is checkbox to disable it
|
20 |
-
import langid
|
21 |
-
import base64
|
22 |
-
import csv
|
23 |
from io import StringIO
|
|
|
24 |
import datetime
|
25 |
-
import
|
26 |
-
|
27 |
-
import gradio as gr
|
28 |
-
from scipy.io.wavfile import write
|
29 |
-
from pydub import AudioSegment
|
30 |
-
|
31 |
from TTS.api import TTS
|
32 |
from TTS.tts.configs.xtts_config import XttsConfig
|
33 |
from TTS.tts.models.xtts import Xtts
|
34 |
from TTS.utils.generic_utils import get_user_data_dir
|
35 |
-
|
36 |
-
HF_TOKEN = os.environ.get("HF_TOKEN")
|
37 |
-
|
38 |
from huggingface_hub import HfApi
|
39 |
|
40 |
-
#
|
|
|
|
|
41 |
api = HfApi(token=HF_TOKEN)
|
42 |
-
repo_id = "
|
43 |
|
44 |
-
#
|
45 |
print("Export newer ffmpeg binary for denoise filter")
|
46 |
ZipFile("ffmpeg.zip").extractall()
|
47 |
print("Make ffmpeg binary executable")
|
48 |
st = os.stat("ffmpeg")
|
49 |
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC)
|
50 |
|
51 |
-
#
|
52 |
print("Downloading if not downloaded Coqui XTTS V2")
|
53 |
from TTS.utils.manage import ModelManager
|
54 |
|
@@ -66,17 +48,12 @@ model.load_checkpoint(
|
|
66 |
checkpoint_path=os.path.join(model_path, "model.pth"),
|
67 |
vocab_path=os.path.join(model_path, "vocab.json"),
|
68 |
eval=True,
|
69 |
-
use_deepspeed=
|
70 |
)
|
71 |
-
model
|
72 |
-
|
73 |
-
# This is for debugging purposes only
|
74 |
-
DEVICE_ASSERT_DETECTED = 0
|
75 |
-
DEVICE_ASSERT_PROMPT = None
|
76 |
-
DEVICE_ASSERT_LANG = None
|
77 |
-
|
78 |
-
supported_languages = config.languages
|
79 |
|
|
|
80 |
def predict(
|
81 |
prompt,
|
82 |
language,
|
@@ -87,617 +64,149 @@ def predict(
|
|
87 |
no_lang_auto_detect,
|
88 |
agree,
|
89 |
):
|
90 |
-
if agree
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
# allow any language for short text as some may be common
|
117 |
-
# If user unchecks language autodetection it will not trigger
|
118 |
-
# You may remove this completely for own use
|
119 |
-
if language_predicted != language and not no_lang_auto_detect:
|
120 |
-
# Please duplicate and remove this check if you really want this
|
121 |
-
# Or auto-detector fails to identify language (which it can on pretty short text or mixed text)
|
122 |
-
gr.Warning(
|
123 |
-
f"It looks like your text isn’t the language you chose , if you’re sure the text is the same language you chose, please check disable language auto-detection checkbox"
|
124 |
-
)
|
125 |
-
|
126 |
-
return (
|
127 |
-
None,
|
128 |
-
None,
|
129 |
-
None,
|
130 |
-
None,
|
131 |
-
)
|
132 |
-
|
133 |
-
if use_mic == True:
|
134 |
-
if mic_file_path is not None:
|
135 |
-
speaker_wav = mic_file_path
|
136 |
-
else:
|
137 |
-
gr.Warning(
|
138 |
-
"Please record your voice with Microphone, or uncheck Use Microphone to use reference audios"
|
139 |
-
)
|
140 |
-
return (
|
141 |
-
None,
|
142 |
-
None,
|
143 |
-
None,
|
144 |
-
None,
|
145 |
-
)
|
146 |
-
|
147 |
-
else:
|
148 |
-
speaker_wav = audio_file_pth
|
149 |
-
|
150 |
-
# Filtering for microphone input, as it has BG noise, maybe silence in beginning and end
|
151 |
-
# This is fast filtering not perfect
|
152 |
-
|
153 |
-
# Apply all on demand
|
154 |
-
lowpassfilter = denoise = trim = loudness = True
|
155 |
-
|
156 |
-
if lowpassfilter:
|
157 |
-
lowpass_highpass = "lowpass=8000,highpass=75,"
|
158 |
-
else:
|
159 |
-
lowpass_highpass = ""
|
160 |
-
|
161 |
-
if trim:
|
162 |
-
# better to remove silence in beginning and end for microphone
|
163 |
-
trim_silence = "areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,"
|
164 |
-
else:
|
165 |
-
trim_silence = ""
|
166 |
-
|
167 |
-
if voice_cleanup:
|
168 |
-
try:
|
169 |
-
out_filename = (
|
170 |
-
speaker_wav + str(uuid.uuid4()) + ".wav"
|
171 |
-
) # ffmpeg to know output format
|
172 |
-
|
173 |
-
# we will use newer ffmpeg as that has afftn denoise filter
|
174 |
-
shell_command = f"./ffmpeg -y -i {speaker_wav} -af {lowpass_highpass}{trim_silence} {out_filename}".split(
|
175 |
-
" "
|
176 |
-
)
|
177 |
-
|
178 |
-
command_result = subprocess.run(
|
179 |
-
[item for item in shell_command],
|
180 |
-
capture_output=False,
|
181 |
-
text=True,
|
182 |
-
check=True,
|
183 |
-
)
|
184 |
-
speaker_wav = out_filename
|
185 |
-
print("Filtered microphone input")
|
186 |
-
except subprocess.CalledProcessError:
|
187 |
-
# There was an error - command exited with non-zero code
|
188 |
-
print("Error: failed filtering, use original microphone input")
|
189 |
-
else:
|
190 |
-
speaker_wav = speaker_wav
|
191 |
-
|
192 |
-
if len(prompt) < 2:
|
193 |
-
gr.Warning("Please give a longer prompt text")
|
194 |
-
return (
|
195 |
-
None,
|
196 |
-
None,
|
197 |
-
None,
|
198 |
-
None,
|
199 |
-
)
|
200 |
-
if len(prompt) > 200:
|
201 |
-
gr.Warning(
|
202 |
-
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
203 |
-
)
|
204 |
-
return (
|
205 |
-
None,
|
206 |
-
None,
|
207 |
-
None,
|
208 |
-
None,
|
209 |
-
)
|
210 |
-
global DEVICE_ASSERT_DETECTED
|
211 |
-
if DEVICE_ASSERT_DETECTED:
|
212 |
-
global DEVICE_ASSERT_PROMPT
|
213 |
-
global DEVICE_ASSERT_LANG
|
214 |
-
# It will likely never come here as we restart space on first unrecoverable error now
|
215 |
-
print(
|
216 |
-
f"Unrecoverable exception caused by language:{DEVICE_ASSERT_LANG} prompt:{DEVICE_ASSERT_PROMPT}"
|
217 |
-
)
|
218 |
-
|
219 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
220 |
-
space = api.get_space_runtime(repo_id=repo_id)
|
221 |
-
if space.stage!="BUILDING":
|
222 |
-
api.restart_space(repo_id=repo_id)
|
223 |
-
else:
|
224 |
-
print("TRIED TO RESTART but space is building")
|
225 |
|
|
|
226 |
try:
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
gpt_cond_latent,
|
234 |
-
speaker_embedding,
|
235 |
-
) = model.get_conditioning_latents(audio_path=speaker_wav, gpt_cond_len=30, gpt_cond_chunk_len=4, max_ref_length=60)
|
236 |
-
except Exception as e:
|
237 |
-
print("Speaker encoding error", str(e))
|
238 |
-
gr.Warning(
|
239 |
-
"It appears something wrong with reference, did you unmute your microphone?"
|
240 |
-
)
|
241 |
-
return (
|
242 |
-
None,
|
243 |
-
None,
|
244 |
-
None,
|
245 |
-
None,
|
246 |
-
)
|
247 |
-
|
248 |
-
latent_calculation_time = time.time() - t_latent
|
249 |
-
# metrics_text=f"Embedding calculation time: {latent_calculation_time:.2f} seconds\n"
|
250 |
-
|
251 |
-
# temporary comma fix
|
252 |
-
prompt= re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)",r"\1 \2\2",prompt)
|
253 |
-
|
254 |
-
wav_chunks = []
|
255 |
-
## Direct mode
|
256 |
-
|
257 |
-
print("I: Generating new audio...")
|
258 |
-
t0 = time.time()
|
259 |
-
out = model.inference(
|
260 |
-
prompt,
|
261 |
-
language,
|
262 |
-
gpt_cond_latent,
|
263 |
-
speaker_embedding,
|
264 |
-
repetition_penalty=5.0,
|
265 |
-
temperature=0.75,
|
266 |
-
)
|
267 |
-
inference_time = time.time() - t0
|
268 |
-
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
269 |
-
metrics_text+=f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
270 |
-
real_time_factor= (time.time() - t0) / out['wav'].shape[-1] * 24000
|
271 |
-
print(f"Real-time factor (RTF): {real_time_factor}")
|
272 |
-
metrics_text+=f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
273 |
-
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
274 |
-
|
275 |
-
|
276 |
-
"""
|
277 |
-
print("I: Generating new audio in streaming mode...")
|
278 |
-
t0 = time.time()
|
279 |
-
chunks = model.inference_stream(
|
280 |
-
prompt,
|
281 |
-
language,
|
282 |
-
gpt_cond_latent,
|
283 |
-
speaker_embedding,
|
284 |
-
repetition_penalty=7.0,
|
285 |
-
temperature=0.85,
|
286 |
-
)
|
287 |
-
|
288 |
-
first_chunk = True
|
289 |
-
for i, chunk in enumerate(chunks):
|
290 |
-
if first_chunk:
|
291 |
-
first_chunk_time = time.time() - t0
|
292 |
-
metrics_text += f"Latency to first audio chunk: {round(first_chunk_time*1000)} milliseconds\n"
|
293 |
-
first_chunk = False
|
294 |
-
wav_chunks.append(chunk)
|
295 |
-
print(f"Received chunk {i} of audio length {chunk.shape[-1]}")
|
296 |
-
inference_time = time.time() - t0
|
297 |
-
print(
|
298 |
-
f"I: Time to generate audio: {round(inference_time*1000)} milliseconds"
|
299 |
-
)
|
300 |
-
#metrics_text += (
|
301 |
-
# f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
|
302 |
-
#)
|
303 |
-
|
304 |
-
wav = torch.cat(wav_chunks, dim=0)
|
305 |
-
print(wav.shape)
|
306 |
-
real_time_factor = (time.time() - t0) / wav.shape[0] * 24000
|
307 |
-
print(f"Real-time factor (RTF): {real_time_factor}")
|
308 |
-
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
309 |
-
|
310 |
-
torchaudio.save("output.wav", wav.squeeze().unsqueeze(0).cpu(), 24000)
|
311 |
-
"""
|
312 |
-
|
313 |
-
except RuntimeError as e:
|
314 |
-
if "device-side assert" in str(e):
|
315 |
-
# cannot do anything on cuda device side error, need tor estart
|
316 |
-
print(
|
317 |
-
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
318 |
-
flush=True,
|
319 |
-
)
|
320 |
-
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
321 |
-
print("Cuda device-assert Runtime encountered need restart")
|
322 |
-
if not DEVICE_ASSERT_DETECTED:
|
323 |
-
DEVICE_ASSERT_DETECTED = 1
|
324 |
-
DEVICE_ASSERT_PROMPT = prompt
|
325 |
-
DEVICE_ASSERT_LANG = language
|
326 |
-
|
327 |
-
# just before restarting save what caused the issue so we can handle it in future
|
328 |
-
# Uploading Error data only happens for unrecovarable error
|
329 |
-
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
330 |
-
error_data = [
|
331 |
-
error_time,
|
332 |
-
prompt,
|
333 |
-
language,
|
334 |
-
audio_file_pth,
|
335 |
-
mic_file_path,
|
336 |
-
use_mic,
|
337 |
-
voice_cleanup,
|
338 |
-
no_lang_auto_detect,
|
339 |
-
agree,
|
340 |
-
]
|
341 |
-
error_data = [str(e) if type(e) != str else e for e in error_data]
|
342 |
-
print(error_data)
|
343 |
-
print(speaker_wav)
|
344 |
-
write_io = StringIO()
|
345 |
-
csv.writer(write_io).writerows([error_data])
|
346 |
-
csv_upload = write_io.getvalue().encode()
|
347 |
-
|
348 |
-
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
349 |
-
print("Writing error csv")
|
350 |
-
error_api = HfApi()
|
351 |
-
error_api.upload_file(
|
352 |
-
path_or_fileobj=csv_upload,
|
353 |
-
path_in_repo=filename,
|
354 |
-
repo_id="coqui/xtts-flagged-dataset",
|
355 |
-
repo_type="dataset",
|
356 |
-
)
|
357 |
-
|
358 |
-
# speaker_wav
|
359 |
-
print("Writing error reference audio")
|
360 |
-
speaker_filename = (
|
361 |
-
error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
362 |
-
)
|
363 |
-
error_api = HfApi()
|
364 |
-
error_api.upload_file(
|
365 |
-
path_or_fileobj=speaker_wav,
|
366 |
-
path_in_repo=speaker_filename,
|
367 |
-
repo_id="coqui/xtts-flagged-dataset",
|
368 |
-
repo_type="dataset",
|
369 |
-
)
|
370 |
-
|
371 |
-
# HF Space specific.. This error is unrecoverable need to restart space
|
372 |
-
space = api.get_space_runtime(repo_id=repo_id)
|
373 |
-
if space.stage!="BUILDING":
|
374 |
-
api.restart_space(repo_id=repo_id)
|
375 |
-
else:
|
376 |
-
print("TRIED TO RESTART but space is building")
|
377 |
-
|
378 |
-
else:
|
379 |
-
if "Failed to decode" in str(e):
|
380 |
-
print("Speaker encoding error", str(e))
|
381 |
-
gr.Warning(
|
382 |
-
"It appears something wrong with reference, did you unmute your microphone?"
|
383 |
-
)
|
384 |
-
else:
|
385 |
-
print("RuntimeError: non device-side assert error:", str(e))
|
386 |
-
gr.Warning("Something unexpected happened please retry again.")
|
387 |
-
return (
|
388 |
-
None,
|
389 |
-
None,
|
390 |
-
None,
|
391 |
-
None,
|
392 |
-
)
|
393 |
-
return (
|
394 |
-
gr.make_waveform(
|
395 |
-
audio="output.wav",
|
396 |
-
),
|
397 |
-
"output.wav",
|
398 |
-
metrics_text,
|
399 |
-
speaker_wav,
|
400 |
-
)
|
401 |
else:
|
402 |
-
|
403 |
-
return (
|
404 |
-
None,
|
405 |
-
None,
|
406 |
-
None,
|
407 |
-
None,
|
408 |
-
)
|
409 |
-
|
410 |
-
|
411 |
-
title = "Coqui🐸 XTTS"
|
412 |
-
|
413 |
-
description = """
|
414 |
-
|
415 |
-
<br/>
|
416 |
-
|
417 |
-
This demo is currently running **XTTS v2.0.3** <a href="https://huggingface.co/coqui/XTTS-v2">XTTS</a> is a multilingual text-to-speech and voice-cloning model. This demo features zero-shot voice cloning, however, you can fine-tune XTTS for better results. Leave a star 🌟 on Github <a href="https://github.com/coqui-ai/TTS">🐸TTS</a>, where our open-source inference and training code lives.
|
418 |
-
|
419 |
-
<br/>
|
420 |
-
|
421 |
-
Supported languages: Arabic: ar, Brazilian Portuguese: pt , Mandarin Chinese: zh-cn, Czech: cs, Dutch: nl, English: en, French: fr, German: de, Italian: it, Polish: pl, Russian: ru, Spanish: es, Turkish: tr, Japanese: ja, Korean: ko, Hungarian: hu, Hindi: hi
|
422 |
-
|
423 |
-
<br/>
|
424 |
-
"""
|
425 |
-
|
426 |
-
links = """
|
427 |
-
<img referrerpolicy="no-referrer-when-downgrade" src="https://static.scarf.sh/a.png?x-pxid=0d00920c-8cc9-4bf3-90f2-a615797e5f59" />
|
428 |
-
|
429 |
-
| | |
|
430 |
-
| ------------------------------- | --------------------------------------- |
|
431 |
-
| 🐸💬 **CoquiTTS** | <a style="display:inline-block" href='https://github.com/coqui-ai/TTS'><img src='https://img.shields.io/github/stars/coqui-ai/TTS?style=social' /></a>|
|
432 |
-
| 💼 **Documentation** | [ReadTheDocs](https://tts.readthedocs.io/en/latest/)
|
433 |
-
| 👩💻 **Questions** | [GitHub Discussions](https://github.com/coqui-ai/TTS/discussions) |
|
434 |
-
| 🗯 **Community** | [![Dicord](https://img.shields.io/discord/1037326658807533628?color=%239B59B6&label=chat%20on%20discord)](https://discord.gg/5eXr5seRrv) |
|
435 |
-
|
436 |
-
|
437 |
-
"""
|
438 |
-
|
439 |
-
article = """
|
440 |
-
<div style='margin:20px auto;'>
|
441 |
-
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
|
442 |
-
<p>We collect data only for error cases for improvement.</p>
|
443 |
-
</div>
|
444 |
-
"""
|
445 |
-
examples = [
|
446 |
-
[
|
447 |
-
"Once when I was six years old I saw a magnificent picture",
|
448 |
-
"en",
|
449 |
-
"examples/female.wav",
|
450 |
-
None,
|
451 |
-
False,
|
452 |
-
False,
|
453 |
-
False,
|
454 |
-
True,
|
455 |
-
],
|
456 |
-
[
|
457 |
-
"Lorsque j'avais six ans j'ai vu, une fois, une magnifique image",
|
458 |
-
"fr",
|
459 |
-
"examples/male.wav",
|
460 |
-
None,
|
461 |
-
False,
|
462 |
-
False,
|
463 |
-
False,
|
464 |
-
True,
|
465 |
-
],
|
466 |
-
[
|
467 |
-
"Als ich sechs war, sah ich einmal ein wunderbares Bild",
|
468 |
-
"de",
|
469 |
-
"examples/female.wav",
|
470 |
-
None,
|
471 |
-
False,
|
472 |
-
False,
|
473 |
-
False,
|
474 |
-
True,
|
475 |
-
],
|
476 |
-
[
|
477 |
-
"Cuando tenía seis años, vi una vez una imagen magnífica",
|
478 |
-
"es",
|
479 |
-
"examples/male.wav",
|
480 |
-
None,
|
481 |
-
False,
|
482 |
-
False,
|
483 |
-
False,
|
484 |
-
True,
|
485 |
-
],
|
486 |
-
[
|
487 |
-
"Quando eu tinha seis anos eu vi, uma vez, uma imagem magnífica",
|
488 |
-
"pt",
|
489 |
-
"examples/female.wav",
|
490 |
-
None,
|
491 |
-
False,
|
492 |
-
False,
|
493 |
-
False,
|
494 |
-
True,
|
495 |
-
],
|
496 |
-
[
|
497 |
-
"Kiedy miałem sześć lat, zobaczyłem pewnego razu wspaniały obrazek",
|
498 |
-
"pl",
|
499 |
-
"examples/male.wav",
|
500 |
-
None,
|
501 |
-
False,
|
502 |
-
False,
|
503 |
-
False,
|
504 |
-
True,
|
505 |
-
],
|
506 |
-
[
|
507 |
-
"Un tempo lontano, quando avevo sei anni, vidi un magnifico disegno",
|
508 |
-
"it",
|
509 |
-
"examples/female.wav",
|
510 |
-
None,
|
511 |
-
False,
|
512 |
-
False,
|
513 |
-
False,
|
514 |
-
True,
|
515 |
-
],
|
516 |
-
[
|
517 |
-
"Bir zamanlar, altı yaşındayken, muhteşem bir resim gördüm",
|
518 |
-
"tr",
|
519 |
-
"examples/female.wav",
|
520 |
-
None,
|
521 |
-
False,
|
522 |
-
False,
|
523 |
-
False,
|
524 |
-
True,
|
525 |
-
],
|
526 |
-
[
|
527 |
-
"Когда мне было шесть лет, я увидел однажды удивительную картинку",
|
528 |
-
"ru",
|
529 |
-
"examples/female.wav",
|
530 |
-
None,
|
531 |
-
False,
|
532 |
-
False,
|
533 |
-
False,
|
534 |
-
True,
|
535 |
-
],
|
536 |
-
[
|
537 |
-
"Toen ik een jaar of zes was, zag ik op een keer een prachtige plaat",
|
538 |
-
"nl",
|
539 |
-
"examples/male.wav",
|
540 |
-
None,
|
541 |
-
False,
|
542 |
-
False,
|
543 |
-
False,
|
544 |
-
True,
|
545 |
-
],
|
546 |
-
[
|
547 |
-
"Když mi bylo šest let, viděl jsem jednou nádherný obrázek",
|
548 |
-
"cs",
|
549 |
-
"examples/female.wav",
|
550 |
-
None,
|
551 |
-
False,
|
552 |
-
False,
|
553 |
-
False,
|
554 |
-
True,
|
555 |
-
],
|
556 |
-
[
|
557 |
-
"当我还只有六岁的时候, 看到了一副精彩的插画",
|
558 |
-
"zh-cn",
|
559 |
-
"examples/female.wav",
|
560 |
-
None,
|
561 |
-
False,
|
562 |
-
False,
|
563 |
-
False,
|
564 |
-
True,
|
565 |
-
],
|
566 |
-
[
|
567 |
-
"かつて 六歳のとき、素晴らしい絵を見ました",
|
568 |
-
"ja",
|
569 |
-
"examples/female.wav",
|
570 |
-
None,
|
571 |
-
False,
|
572 |
-
True,
|
573 |
-
False,
|
574 |
-
True,
|
575 |
-
],
|
576 |
-
[
|
577 |
-
"한번은 내가 여섯 살이었을 때 멋진 그림을 보았습니다.",
|
578 |
-
"ko",
|
579 |
-
"examples/female.wav",
|
580 |
-
None,
|
581 |
-
False,
|
582 |
-
True,
|
583 |
-
False,
|
584 |
-
True,
|
585 |
-
],
|
586 |
-
[
|
587 |
-
"Egyszer hat éves koromban láttam egy csodálatos képet",
|
588 |
-
"hu",
|
589 |
-
"examples/male.wav",
|
590 |
-
None,
|
591 |
-
False,
|
592 |
-
True,
|
593 |
-
False,
|
594 |
-
True,
|
595 |
-
],
|
596 |
-
]
|
597 |
|
|
|
|
|
|
|
598 |
|
|
|
|
|
|
|
|
|
|
|
|
|
599 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
with gr.Blocks(analytics_enabled=False) as demo:
|
601 |
with gr.Row():
|
602 |
with gr.Column():
|
603 |
-
gr.Markdown(
|
604 |
-
"""
|
605 |
-
## <img src="https://raw.githubusercontent.com/coqui-ai/TTS/main/images/coqui-log-green-TTS.png" height="56"/>
|
606 |
-
"""
|
607 |
-
)
|
608 |
with gr.Column():
|
609 |
-
# placeholder to align the image
|
610 |
pass
|
611 |
|
612 |
-
with gr.Row():
|
613 |
-
with gr.Column():
|
614 |
-
gr.Markdown(description)
|
615 |
-
with gr.Column():
|
616 |
-
gr.Markdown(links)
|
617 |
-
|
618 |
with gr.Row():
|
619 |
with gr.Column():
|
620 |
input_text_gr = gr.Textbox(
|
621 |
label="Text Prompt",
|
622 |
-
info="One or two sentences at a time
|
623 |
-
value="
|
624 |
)
|
625 |
language_gr = gr.Dropdown(
|
626 |
label="Language",
|
627 |
-
info="Select an output language for the synthesised speech",
|
628 |
choices=[
|
629 |
-
"en",
|
630 |
-
"
|
631 |
-
"fr",
|
632 |
-
"de",
|
633 |
-
"it",
|
634 |
-
"pt",
|
635 |
-
"pl",
|
636 |
-
"tr",
|
637 |
-
"ru",
|
638 |
-
"nl",
|
639 |
-
"cs",
|
640 |
-
"ar",
|
641 |
-
"zh-cn",
|
642 |
-
"ja",
|
643 |
-
"ko",
|
644 |
-
"hu",
|
645 |
-
"hi"
|
646 |
],
|
647 |
-
max_choices=1,
|
648 |
value="en",
|
649 |
)
|
650 |
ref_gr = gr.Audio(
|
651 |
label="Reference Audio",
|
652 |
-
info="Click on the ✎ button to upload your own target speaker audio",
|
653 |
type="filepath",
|
654 |
value="examples/female.wav",
|
655 |
)
|
656 |
mic_gr = gr.Audio(
|
657 |
source="microphone",
|
658 |
type="filepath",
|
659 |
-
info="Use your microphone to record audio",
|
660 |
label="Use Microphone for Reference",
|
661 |
)
|
662 |
use_mic_gr = gr.Checkbox(
|
663 |
label="Use Microphone",
|
664 |
value=False,
|
665 |
-
info="Notice: Microphone input may not work properly under traffic",
|
666 |
)
|
667 |
clean_ref_gr = gr.Checkbox(
|
668 |
label="Cleanup Reference Voice",
|
669 |
value=False,
|
670 |
-
info="This check can improve output if your microphone or reference voice is noisy",
|
671 |
)
|
672 |
auto_det_lang_gr = gr.Checkbox(
|
673 |
-
label="
|
674 |
value=False,
|
675 |
-
info="Check to disable language auto-detection",
|
676 |
)
|
677 |
tos_gr = gr.Checkbox(
|
678 |
label="Agree",
|
679 |
value=False,
|
680 |
-
info="I agree to the terms of the CPML: https://coqui.ai/cpml",
|
681 |
)
|
682 |
|
683 |
-
tts_button = gr.Button("Send"
|
684 |
-
|
685 |
|
686 |
with gr.Column():
|
687 |
video_gr = gr.Video(label="Waveform Visual")
|
688 |
-
audio_gr = gr.Audio(label="
|
689 |
out_text_gr = gr.Text(label="Metrics")
|
690 |
ref_audio_gr = gr.Audio(label="Reference Audio Used")
|
691 |
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
fn=predict,
|
698 |
-
cache_examples=False,)
|
699 |
-
|
700 |
-
tts_button.click(predict, [input_text_gr, language_gr, ref_gr, mic_gr, use_mic_gr, clean_ref_gr, auto_det_lang_gr, tos_gr], outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr])
|
701 |
|
702 |
-
demo.queue()
|
703 |
-
demo.launch(debug=True
|
|
|
1 |
+
import os
|
|
|
|
|
|
|
|
|
2 |
import uuid
|
3 |
import time
|
4 |
import torch
|
5 |
+
import gradio as gr
|
6 |
import torchaudio
|
7 |
+
import subprocess
|
8 |
+
import numpy as np
|
9 |
+
from zipfile import ZipFile
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
from io import StringIO
|
11 |
+
import csv
|
12 |
import datetime
|
13 |
+
import langid
|
|
|
|
|
|
|
|
|
|
|
14 |
from TTS.api import TTS
|
15 |
from TTS.tts.configs.xtts_config import XttsConfig
|
16 |
from TTS.tts.models.xtts import Xtts
|
17 |
from TTS.utils.generic_utils import get_user_data_dir
|
|
|
|
|
|
|
18 |
from huggingface_hub import HfApi
|
19 |
|
20 |
+
# Set up environment and API
|
21 |
+
os.environ["COQUI_TOS_AGREED"] = "1"
|
22 |
+
HF_TOKEN = os.environ.get("HF_TOKEN")
|
23 |
api = HfApi(token=HF_TOKEN)
|
24 |
+
repo_id = "your/repo-id" # Replace with your repository ID
|
25 |
|
26 |
+
# Download and set up ffmpeg
|
27 |
print("Export newer ffmpeg binary for denoise filter")
|
28 |
ZipFile("ffmpeg.zip").extractall()
|
29 |
print("Make ffmpeg binary executable")
|
30 |
st = os.stat("ffmpeg")
|
31 |
os.chmod("ffmpeg", st.st_mode | stat.S_IEXEC)
|
32 |
|
33 |
+
# Load XTTS model
|
34 |
print("Downloading if not downloaded Coqui XTTS V2")
|
35 |
from TTS.utils.manage import ModelManager
|
36 |
|
|
|
48 |
checkpoint_path=os.path.join(model_path, "model.pth"),
|
49 |
vocab_path=os.path.join(model_path, "vocab.json"),
|
50 |
eval=True,
|
51 |
+
use_deepspeed=False, # Adjust based on your setup
|
52 |
)
|
53 |
+
# Ensure model is on CPU
|
54 |
+
model.cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
+
# Function for prediction
|
57 |
def predict(
|
58 |
prompt,
|
59 |
language,
|
|
|
64 |
no_lang_auto_detect,
|
65 |
agree,
|
66 |
):
|
67 |
+
if not agree:
|
68 |
+
gr.Warning("Please accept the Terms & Condition!")
|
69 |
+
return (None, None, None, None)
|
70 |
+
|
71 |
+
if language not in config.languages:
|
72 |
+
gr.Warning(f"Language not supported. Please choose from dropdown.")
|
73 |
+
return (None, None, None, None)
|
74 |
+
|
75 |
+
language_predicted = langid.classify(prompt)[0].strip()
|
76 |
+
if language_predicted == "zh":
|
77 |
+
language_predicted = "zh-cn"
|
78 |
+
|
79 |
+
if len(prompt) < 2:
|
80 |
+
gr.Warning("Please provide a longer prompt text.")
|
81 |
+
return (None, None, None, None)
|
82 |
+
if len(prompt) > 200:
|
83 |
+
gr.Warning("Text length limited to 200 characters.")
|
84 |
+
return (None, None, None, None)
|
85 |
+
|
86 |
+
if use_mic:
|
87 |
+
if mic_file_path is None:
|
88 |
+
gr.Warning("Please record your voice with Microphone.")
|
89 |
+
return (None, None, None, None)
|
90 |
+
speaker_wav = mic_file_path
|
91 |
+
else:
|
92 |
+
speaker_wav = audio_file_pth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
if voice_cleanup:
|
95 |
try:
|
96 |
+
out_filename = f"{speaker_wav}_{uuid.uuid4()}.wav"
|
97 |
+
shell_command = f"./ffmpeg -y -i {speaker_wav} -af lowpass=8000,highpass=75,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02,areverse,silenceremove=start_periods=1:start_silence=0:start_threshold=0.02 {out_filename}".split()
|
98 |
+
subprocess.run(shell_command, capture_output=False, text=True, check=True)
|
99 |
+
speaker_wav = out_filename
|
100 |
+
except subprocess.CalledProcessError:
|
101 |
+
print("Error filtering audio.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
else:
|
103 |
+
speaker_wav = speaker_wav
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
+
try:
|
106 |
+
metrics_text = ""
|
107 |
+
t_latent = time.time()
|
108 |
|
109 |
+
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
|
110 |
+
audio_path=speaker_wav,
|
111 |
+
gpt_cond_len=30,
|
112 |
+
gpt_cond_chunk_len=4,
|
113 |
+
max_ref_length=60
|
114 |
+
)
|
115 |
|
116 |
+
latent_calculation_time = time.time() - t_latent
|
117 |
+
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
118 |
+
|
119 |
+
print("Generating audio...")
|
120 |
+
t0 = time.time()
|
121 |
+
out = model.inference(
|
122 |
+
prompt,
|
123 |
+
language,
|
124 |
+
gpt_cond_latent,
|
125 |
+
speaker_embedding,
|
126 |
+
repetition_penalty=5.0,
|
127 |
+
temperature=0.75,
|
128 |
+
)
|
129 |
+
inference_time = time.time() - t0
|
130 |
+
metrics_text += f"Time to generate audio: {round(inference_time * 1000)} milliseconds\n"
|
131 |
+
real_time_factor = (time.time() - t0) / out['wav'].shape[-1] * 24000
|
132 |
+
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
133 |
+
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
134 |
+
|
135 |
+
except RuntimeError as e:
|
136 |
+
print(f"RuntimeError: {str(e)}")
|
137 |
+
gr.Warning("An error occurred. Please try again.")
|
138 |
+
return (None, None, None, None)
|
139 |
+
|
140 |
+
return (
|
141 |
+
gr.make_waveform(audio="output.wav"),
|
142 |
+
"output.wav",
|
143 |
+
metrics_text,
|
144 |
+
speaker_wav,
|
145 |
+
)
|
146 |
+
|
147 |
+
# Gradio interface
|
148 |
with gr.Blocks(analytics_enabled=False) as demo:
|
149 |
with gr.Row():
|
150 |
with gr.Column():
|
151 |
+
gr.Markdown("## XTTS Demo")
|
|
|
|
|
|
|
|
|
152 |
with gr.Column():
|
|
|
153 |
pass
|
154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
with gr.Row():
|
156 |
with gr.Column():
|
157 |
input_text_gr = gr.Textbox(
|
158 |
label="Text Prompt",
|
159 |
+
info="One or two sentences at a time. Up to 200 characters.",
|
160 |
+
value="Hello! Try your best to upload quality audio.",
|
161 |
)
|
162 |
language_gr = gr.Dropdown(
|
163 |
label="Language",
|
|
|
164 |
choices=[
|
165 |
+
"en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl",
|
166 |
+
"cs", "ar", "zh-cn", "ja", "ko", "hu", "hi"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
],
|
|
|
168 |
value="en",
|
169 |
)
|
170 |
ref_gr = gr.Audio(
|
171 |
label="Reference Audio",
|
|
|
172 |
type="filepath",
|
173 |
value="examples/female.wav",
|
174 |
)
|
175 |
mic_gr = gr.Audio(
|
176 |
source="microphone",
|
177 |
type="filepath",
|
|
|
178 |
label="Use Microphone for Reference",
|
179 |
)
|
180 |
use_mic_gr = gr.Checkbox(
|
181 |
label="Use Microphone",
|
182 |
value=False,
|
|
|
183 |
)
|
184 |
clean_ref_gr = gr.Checkbox(
|
185 |
label="Cleanup Reference Voice",
|
186 |
value=False,
|
|
|
187 |
)
|
188 |
auto_det_lang_gr = gr.Checkbox(
|
189 |
+
label="Disable Language Auto-Detect",
|
190 |
value=False,
|
|
|
191 |
)
|
192 |
tos_gr = gr.Checkbox(
|
193 |
label="Agree",
|
194 |
value=False,
|
|
|
195 |
)
|
196 |
|
197 |
+
tts_button = gr.Button("Send")
|
|
|
198 |
|
199 |
with gr.Column():
|
200 |
video_gr = gr.Video(label="Waveform Visual")
|
201 |
+
audio_gr = gr.Audio(label="Synthesized Audio", autoplay=True)
|
202 |
out_text_gr = gr.Text(label="Metrics")
|
203 |
ref_audio_gr = gr.Audio(label="Reference Audio Used")
|
204 |
|
205 |
+
tts_button.click(
|
206 |
+
predict,
|
207 |
+
inputs=[input_text_gr, language_gr, ref_gr, mic_gr, use_mic_gr, clean_ref_gr, auto_det_lang_gr, tos_gr],
|
208 |
+
outputs=[video_gr, audio_gr, out_text_gr, ref_audio_gr]
|
209 |
+
)
|
|
|
|
|
|
|
|
|
210 |
|
211 |
+
demo.queue()
|
212 |
+
demo.launch(debug=True)
|