Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,24 +1,16 @@
|
|
1 |
-
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
import numpy as np
|
4 |
import time
|
5 |
import json
|
6 |
import os
|
7 |
-
from langchain_openai import ChatOpenAI
|
8 |
-
from langchain_core.output_parsers import StrOutputParser
|
9 |
from dotenv import load_dotenv
|
10 |
import logging
|
11 |
|
12 |
load_dotenv()
|
13 |
zhipuai_api_key = os.getenv("ZHIPUAI_API_KEY")
|
14 |
|
15 |
-
#
|
16 |
-
|
17 |
-
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-tiny")
|
18 |
-
logging.info("Whisper model loaded successfully")
|
19 |
-
except Exception as e:
|
20 |
-
logging.error(f"Error loading Whisper model: {e}")
|
21 |
-
transcriber = None
|
22 |
|
23 |
# 初始化对话记录
|
24 |
conversation = []
|
@@ -31,40 +23,22 @@ def transcribe(audio):
|
|
31 |
return "No audio input received"
|
32 |
|
33 |
try:
|
34 |
-
logging.info(f"Audio input received: {type(audio)}
|
35 |
-
sr, y = audio
|
36 |
-
logging.info(f"Sample rate: {sr}, Audio data shape: {y.shape}")
|
37 |
|
38 |
-
#
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
logging.info(f"Audio data shape after conversion: {y.shape}")
|
43 |
-
|
44 |
-
y = y.astype(np.float32)
|
45 |
-
y /= np.max(np.abs(y))
|
46 |
-
|
47 |
-
# 使用中文进行转录
|
48 |
-
if transcriber is not None:
|
49 |
-
logging.info("Starting transcription")
|
50 |
-
result = transcriber({"sampling_rate": sr, "raw": y}, generate_kwargs={"language": "chinese"})
|
51 |
-
text = result["text"].strip()
|
52 |
-
logging.info(f"Transcription result: {text}")
|
53 |
-
else:
|
54 |
-
logging.error("Transcriber not initialized")
|
55 |
-
return "Transcriber not initialized"
|
56 |
-
|
57 |
# 创建结构化数据
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
current_speaker = "医生" if current_speaker == "患者" else "患者"
|
68 |
|
69 |
# 将对话记录转换为格式化的字符串
|
70 |
formatted_conversation = json.dumps(conversation, ensure_ascii=False, indent=2)
|
@@ -79,56 +53,20 @@ def switch_speaker():
|
|
79 |
current_speaker = "医生" if current_speaker == "患者" else "患者"
|
80 |
return f"当前说话者:{current_speaker}"
|
81 |
|
82 |
-
def generate_memo(conversation_json):
|
83 |
-
llm = ChatOpenAI(
|
84 |
-
model="glm-3-turbo",
|
85 |
-
temperature=0.7,
|
86 |
-
openai_api_key=zhipuai_api_key,
|
87 |
-
openai_api_base="https://open.bigmodel.cn/api/paas/v4/"
|
88 |
-
)
|
89 |
-
|
90 |
-
prompt = f"""
|
91 |
-
请根据以下医生和患者的对话,生成一份结构化的备忘录。备忘录应包含以下字段:主诉、检查、诊断、治疗和备注。
|
92 |
-
如果某个字段在对话中没有明确提及,请填写"未提及"。
|
93 |
-
|
94 |
-
对话内容:
|
95 |
-
{conversation_json}
|
96 |
-
|
97 |
-
请以JSON格式输出备忘录,格式如下:
|
98 |
-
{{
|
99 |
-
"主诉": "患者的主要症状和不适",
|
100 |
-
"检查": "医生建议或已进行的检查",
|
101 |
-
"诊断": "医生对患者的诊断",
|
102 |
-
"治疗": "医生对患者的治疗建议",
|
103 |
-
"备注": "医生对患者的备注"
|
104 |
-
}}
|
105 |
-
"""
|
106 |
-
|
107 |
-
output = llm.invoke(prompt)
|
108 |
-
output_parser = StrOutputParser()
|
109 |
-
output = output_parser.invoke(output)
|
110 |
-
#st.info(output)
|
111 |
-
return output
|
112 |
-
|
113 |
-
|
114 |
# 创建Gradio界面
|
115 |
with gr.Blocks() as demo:
|
116 |
-
gr.Markdown("#
|
117 |
-
gr.Markdown("
|
118 |
|
119 |
with gr.Row():
|
120 |
-
audio_input = gr.Audio(
|
121 |
speaker_button = gr.Button("切换说话者")
|
122 |
|
123 |
speaker_label = gr.Label("当前说话者:患者")
|
124 |
conversation_output = gr.JSON(label="对话记录")
|
125 |
-
memo_output = gr.JSON(label="备忘录")
|
126 |
-
|
127 |
-
generate_memo_button = gr.Button("生成备忘录")
|
128 |
|
129 |
-
audio_input.
|
130 |
speaker_button.click(switch_speaker, outputs=[speaker_label])
|
131 |
-
generate_memo_button.click(generate_memo, inputs=[conversation_output], outputs=[memo_output])
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
-
demo.launch()
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import time
|
4 |
import json
|
5 |
import os
|
|
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
import logging
|
8 |
|
9 |
load_dotenv()
|
10 |
zhipuai_api_key = os.getenv("ZHIPUAI_API_KEY")
|
11 |
|
12 |
+
# 设置日志记录
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# 初始化对话记录
|
16 |
conversation = []
|
|
|
23 |
return "No audio input received"
|
24 |
|
25 |
try:
|
26 |
+
logging.info(f"Audio input received: {type(audio)}")
|
|
|
|
|
27 |
|
28 |
+
# 简单的音频处理
|
29 |
+
audio_array = audio.flatten() # 将音频转换为一维数组
|
30 |
+
audio_text = f"Received audio with length: {len(audio_array)}"
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# 创建结构化数据
|
33 |
+
current_time = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
34 |
+
conversation.append({
|
35 |
+
"时间": current_time,
|
36 |
+
"角色": current_speaker,
|
37 |
+
"内容": audio_text
|
38 |
+
})
|
39 |
+
|
40 |
+
# 切换说话者
|
41 |
+
current_speaker = "医生" if current_speaker == "患者" else "患者"
|
|
|
42 |
|
43 |
# 将对话记录转换为格式化的字符串
|
44 |
formatted_conversation = json.dumps(conversation, ensure_ascii=False, indent=2)
|
|
|
53 |
current_speaker = "医生" if current_speaker == "患者" else "患者"
|
54 |
return f"当前说话者:{current_speaker}"
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# 创建Gradio界面
|
57 |
with gr.Blocks() as demo:
|
58 |
+
gr.Markdown("# 音频输入测试")
|
59 |
+
gr.Markdown("上传音频文件或使用麦克风录音。")
|
60 |
|
61 |
with gr.Row():
|
62 |
+
audio_input = gr.Audio(source="microphone", type="numpy")
|
63 |
speaker_button = gr.Button("切换说话者")
|
64 |
|
65 |
speaker_label = gr.Label("当前说话者:患者")
|
66 |
conversation_output = gr.JSON(label="对话记录")
|
|
|
|
|
|
|
67 |
|
68 |
+
audio_input.change(transcribe, inputs=[audio_input], outputs=[conversation_output])
|
69 |
speaker_button.click(switch_speaker, outputs=[speaker_label])
|
|
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
+
demo.launch()
|