Spaces:
Running
Running
File size: 12,011 Bytes
8fc219d 62cf647 8fc219d 069137c 8fc219d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import gradio as gr
import numpy as np
import cv2
import tensorflow as tf
import torch
from PIL import Image
# ============== HF Transformers / ViT Model ==============
from transformers import ViTImageProcessor, ViTForImageClassification
# ----------- 1. Load the ViT model & processor ------------
vit_processor = ViTImageProcessor.from_pretrained('wambugu1738/crop_leaf_diseases_vit')
vit_model = ViTForImageClassification.from_pretrained(
'wambugu1738/crop_leaf_diseases_vit',
ignore_mismatched_sizes=True
)
vit_label_treatment = {
"Corn___Common_rust": "Use recommended fungicides and ensure crop rotation.",
"Corn___Cercospora_leaf_spot": "Apply foliar fungicides; ensure good field sanitation.",
"Potato___Early_blight": "Apply preventive fungicides; remove infected debris.",
"Potato___Late_blight": "Use certified seed tubers; fungicide sprays when conditions favor disease.",
"Rice___Leaf_blight": "Use resistant rice varieties, maintain field hygiene.",
"Wheat___Leaf_rust": "Plant resistant wheat varieties, apply foliar fungicides if severe.",
# Fallback
"Unknown": "No specific treatment available."
}
def classify_image_vit(image):
if not isinstance(image, Image.Image):
image = Image.fromarray(image.astype('uint8'), 'RGB')
inputs = vit_processor(images=image, return_tensors="pt")
outputs = vit_model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
# Predicted label
predicted_label = vit_model.config.id2label.get(predicted_class_idx, "Unknown")
treatment_text = vit_label_treatment.get(predicted_label, "No specific treatment available.")
return predicted_label, treatment_text
# ============== TensorFlow Model (plant_model_v5-beta.h5) ==============
# Load the model
keras_model = tf.keras.models.load_model('plant_model_v5-beta.h5')
# Define the class names
class_names = {
0: 'Apple___Apple_scab',
1: 'Apple___Black_rot',
2: 'Apple___Cedar_apple_rust',
3: 'Apple___healthy',
4: 'Not a plant',
5: 'Blueberry___healthy',
6: 'Cherry___Powdery_mildew',
7: 'Cherry___healthy',
8: 'Corn___Cercospora_leaf_spot Gray_leaf_spot',
9: 'Corn___Common_rust',
10: 'Corn___Northern_Leaf_Blight',
11: 'Corn___healthy',
12: 'Grape___Black_rot',
13: 'Grape___Esca_(Black_Measles)',
14: 'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)',
15: 'Grape___healthy',
16: 'Orange___Haunglongbing_(Citrus_greening)',
17: 'Peach___Bacterial_spot',
18: 'Peach___healthy',
19: 'Pepper,_bell___Bacterial_spot',
20: 'Pepper,_bell___healthy',
21: 'Potato___Early_blight',
22: 'Potato___Late_blight',
23: 'Potato___healthy',
24: 'Raspberry___healthy',
25: 'Soybean___healthy',
26: 'Squash___Powdery_mildew',
27: 'Strawberry___Leaf_scorch',
28: 'Strawberry___healthy',
29: 'Tomato___Bacterial_spot',
30: 'Tomato___Early_blight',
31: 'Tomato___Late_blight',
32: 'Tomato___Leaf_Mold',
33: 'Tomato___Septoria_leaf_spot',
34: 'Tomato___Spider_mites Two-spotted_spider_mite',
35: 'Tomato___Target_Spot',
36: 'Tomato___Tomato_Yellow_Leaf_Curl_Virus',
37: 'Tomato___Tomato_mosaic_virus',
38: 'Tomato___healthy'
}
# Example dictionary of "treatments" for some classes
keras_treatments = {
'Apple___Apple_scab': "Remove fallen leaves and prune infected branches. Apply fungicides containing captan or myclobutanil.",
'Apple___Black_rot': "Prune out dead branches. Spray copper-based fungicide during early fruit development.",
'Apple___Cedar_apple_rust': "Remove nearby juniper trees. Apply fungicides before bud break.",
'Apple___healthy': "No action required. The plant is healthy.",
'Blueberry___healthy': "No action required. The plant is healthy.",
'Cherry___Powdery_mildew': "Apply sulfur-based fungicide. Ensure good air circulation around the plant.",
'Cherry___healthy': "No action required. The plant is healthy.",
'Corn___Cercospora_leaf_spot Gray_leaf_spot': "Rotate crops to avoid build-up of pathogens. Use resistant hybrids and apply foliar fungicides.",
'Corn___Common_rust': "Plant rust-resistant hybrids. Apply fungicides at the first sign of rust.",
'Corn___Northern_Leaf_Blight': "Use resistant varieties and apply fungicides when lesions are observed.",
'Corn___healthy': "No action required. The plant is healthy.",
'Grape___Black_rot': "Remove and destroy infected leaves and fruits. Apply fungicides containing myclobutanil or captan.",
'Grape___Esca_(Black_Measles)': "Prune and destroy infected wood. Apply fungicides during the growing season.",
'Grape___Leaf_blight_(Isariopsis_Leaf_Spot)': "Maintain good air circulation. Spray protective fungicides like mancozeb.",
'Grape___healthy': "No action required. The plant is healthy.",
'Orange___Haunglongbing_(Citrus_greening)': "Remove and destroy infected trees. Control psyllid vectors with insecticides.",
'Peach___Bacterial_spot': "Apply copper-based bactericides. Use resistant varieties and avoid overhead irrigation.",
'Peach___healthy': "No action required. The plant is healthy.",
'Pepper,_bell___Bacterial_spot': "Apply copper-based sprays. Use certified seeds and avoid overhead irrigation.",
'Pepper,_bell___healthy': "No action required. The plant is healthy.",
'Potato___Early_blight': "Use certified seeds and apply preventative fungicides like chlorothalonil.",
'Potato___Late_blight': "Plant disease-free tubers and use fungicides containing metalaxyl.",
'Potato___healthy': "No action required. The plant is healthy.",
'Raspberry___healthy': "No action required. The plant is healthy.",
'Soybean___healthy': "No action required. The plant is healthy.",
'Squash___Powdery_mildew': "Use sulfur-based fungicides and ensure good ventilation.",
'Strawberry___Leaf_scorch': "Remove infected leaves. Apply fungicides containing myclobutanil.",
'Strawberry___healthy': "No action required. The plant is healthy.",
'Tomato___Bacterial_spot': "Apply copper-based sprays. Avoid overhead watering.",
'Tomato___Early_blight': "Prune infected leaves and apply fungicides containing chlorothalonil or mancozeb.",
'Tomato___Late_blight': "Remove infected plants. Apply fungicides containing chlorothalonil or metalaxyl.",
'Tomato___Leaf_Mold': "Ensure good ventilation and apply fungicides like mancozeb.",
'Tomato___Septoria_leaf_spot': "Remove infected leaves and apply fungicides containing chlorothalonil.",
'Tomato___Spider_mites Two-spotted_spider_mite': "Spray insecticidal soap or neem oil. Maintain humidity levels.",
'Tomato___Target_Spot': "Use resistant varieties. Apply fungicides containing chlorothalonil.",
'Tomato___Tomato_Yellow_Leaf_Curl_Virus': "Remove infected plants. Use resistant varieties and control whitefly vectors.",
'Tomato___Tomato_mosaic_virus': "Remove infected plants and disinfect tools. Use resistant seed varieties.",
'Tomato___healthy': "No action required. The plant is healthy.",
'Unknown': "No specific treatment available."
}
def edge_and_cut(img, threshold1, threshold2):
emb_img = img.copy()
edges = cv2.Canny(img, threshold1, threshold2)
edge_coors = []
for i in range(edges.shape[0]):
for j in range(edges.shape[1]):
if edges[i][j] != 0:
edge_coors.append((i, j))
if len(edge_coors) == 0:
return emb_img
row_min = edge_coors[np.argsort([coor[0] for coor in edge_coors])[0]][0]
row_max = edge_coors[np.argsort([coor[0] for coor in edge_coors])[-1]][0]
col_min = edge_coors[np.argsort([coor[1] for coor in edge_coors])[0]][1]
col_max = edge_coors[np.argsort([coor[1] for coor in edge_coors])[-1]][1]
new_img = img[row_min:row_max, col_min:col_max]
# Simple bounding box in white
emb_color = np.array([255], dtype=np.uint8)
emb_img[row_min-10:row_min+10, col_min:col_max] = emb_color
emb_img[row_max-10:row_max+10, col_min:col_max] = emb_color
emb_img[row_min:row_max, col_min-10:col_min+10] = emb_color
emb_img[row_min:row_max, col_max-10:col_max+10] = emb_color
return emb_img
def classify_and_visualize_keras(image):
# Preprocess the image
img_array = tf.image.resize(image, [256, 256])
img_array = tf.expand_dims(img_array, 0) / 255.0
# Make a prediction
prediction = keras_model.predict(img_array)
predicted_class_idx = tf.argmax(prediction[0], axis=-1).numpy()
confidence = np.max(prediction[0])
# Obtain the predicted label
predicted_label = class_names.get(predicted_class_idx, "Unknown")
if confidence < 0.60:
class_name = "Uncertain / Not in dataset"
bounded_image = image
treatment_text = "No treatment recommendation (uncertain prediction)."
else:
class_name = predicted_label
bounded_image = edge_and_cut(image, 200, 400)
treatment_text = keras_treatments.get(predicted_label, "No specific treatment available.")
return class_name, float(confidence), bounded_image, treatment_text
# ============== Combined Gradio App ==============
def main_model_selector(model_choice, image):
"""
Dispatch function based on user choice of model:
- 'Vit-model (Corn/Potato/Rice/Wheat)' -> use classify_image_vit
- 'Keras-model (Apple/Blueberry/Cherry/etc.)' -> use classify_and_visualize_keras
"""
if image is None:
return "No image provided.", None, None, None
if model_choice == "ViT (Corn, Potato, Rice, Wheat)":
# Return: label, treatment
predicted_label, treatment_text = classify_image_vit(image)
# For consistency with the Keras model outputs,
# we'll keep placeholders for confidence & bounding box
return predicted_label, None, image, treatment_text
elif model_choice == "Keras (Apple, Blueberry, Cherry, etc.)":
# Return: class_name, confidence, bounded_image, treatment_text
class_name, confidence, bounded_image, treatment_text = classify_and_visualize_keras(image)
return class_name, confidence, bounded_image, treatment_text
else:
return "Invalid model choice.", None, None, None
# Create Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# **Plant Disease Detection**")
gr.Markdown(
"Select which model you want to use, then upload an image to see the prediction, "
"confidence (if applicable), bounding box (if applicable), and a suggested treatment."
)
with gr.Row():
model_choice = gr.Radio(
choices=["ViT (Corn, Potato, Rice, Wheat)", "Keras (Apple, Blueberry, Cherry, etc.)"],
value="Keras (Apple, Blueberry, Cherry, etc.)",
label="Select Model"
)
with gr.Row():
inp_image = gr.Image(type="numpy", label="Upload Leaf Image")
# Outputs
with gr.Row():
out_label = gr.Textbox(label="Predicted Class")
out_confidence = gr.Textbox(label="Confidence (If Available)")
out_bounded_image = gr.Image(label="Visualization (If Available)")
out_treatment = gr.Textbox(label="Treatment Recommendation")
# Button
btn = gr.Button("Classify")
# Function binding
btn.click(
fn=main_model_selector,
inputs=[model_choice, inp_image],
outputs=[out_label, out_confidence, out_bounded_image, out_treatment]
)
# Provide some example images
gr.Examples(
examples=[
["Keras (Apple, Blueberry, Cherry, etc.)", "corn.jpg"],
["Keras (Apple, Blueberry, Cherry, etc.)", "grot.jpg"],
["Keras (Apple, Blueberry, Cherry, etc.)", "Potato___Early_blight.jpg"],
["Keras (Apple, Blueberry, Cherry, etc.)", "Tomato___Target_Spot.jpg"],
["ViT (Corn, Potato, Rice, Wheat)", "corn.jpg"],
],
inputs=[model_choice, inp_image]
)
demo.launch(share=True)
|