T2I-Adapter / ldm /util.py
Adapter's picture
support composable adapter (#5)
b3478e4
import importlib
import math
import cv2
import torch
import numpy as np
import os
from safetensors.torch import load_file
from inspect import isfunction
from PIL import Image, ImageDraw, ImageFont
def log_txt_as_img(wh, xc, size=10):
# wh a tuple of (width, height)
# xc a list of captions to plot
b = len(xc)
txts = list()
for bi in range(b):
txt = Image.new("RGB", wh, color="white")
draw = ImageDraw.Draw(txt)
font = ImageFont.truetype('assets/DejaVuSans.ttf', size=size)
nc = int(40 * (wh[0] / 256))
lines = "\n".join(xc[bi][start:start + nc] for start in range(0, len(xc[bi]), nc))
try:
draw.text((0, 0), lines, fill="black", font=font)
except UnicodeEncodeError:
print("Cant encode string for logging. Skipping.")
txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
txts.append(txt)
txts = np.stack(txts)
txts = torch.tensor(txts)
return txts
def ismap(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] > 3)
def isimage(x):
if not isinstance(x, torch.Tensor):
return False
return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def mean_flat(tensor):
"""
https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
Take the mean over all non-batch dimensions.
"""
return tensor.mean(dim=list(range(1, len(tensor.shape))))
def count_params(model, verbose=False):
total_params = sum(p.numel() for p in model.parameters())
if verbose:
print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
return total_params
def instantiate_from_config(config):
if not "target" in config:
if config == '__is_first_stage__':
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
checkpoint_dict_replacements = {
'cond_stage_model.transformer.text_model.embeddings.': 'cond_stage_model.transformer.embeddings.',
'cond_stage_model.transformer.text_model.encoder.': 'cond_stage_model.transformer.encoder.',
'cond_stage_model.transformer.text_model.final_layer_norm.': 'cond_stage_model.transformer.final_layer_norm.',
}
def transform_checkpoint_dict_key(k):
for text, replacement in checkpoint_dict_replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
return k
def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if new_key is not None:
sd[new_key] = v
pl_sd.clear()
pl_sd.update(sd)
return pl_sd
def read_state_dict(checkpoint_file, print_global_state=False):
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors":
pl_sd = load_file(checkpoint_file, device='cpu')
else:
pl_sd = torch.load(checkpoint_file, map_location='cpu')
if print_global_state and "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = get_state_dict_from_checkpoint(pl_sd)
return sd
def load_model_from_config(config, ckpt, vae_ckpt=None, verbose=False):
print(f"Loading model from {ckpt}")
sd = read_state_dict(ckpt)
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
if 'anything' in ckpt.lower() and vae_ckpt is None:
vae_ckpt = 'models/anything-v4.0.vae.pt'
if vae_ckpt is not None and vae_ckpt != 'None':
print(f"Loading vae model from {vae_ckpt}")
vae_sd = torch.load(vae_ckpt, map_location="cpu")
if "global_step" in vae_sd:
print(f"Global Step: {vae_sd['global_step']}")
sd = vae_sd["state_dict"]
m, u = model.first_stage_model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
def resize_numpy_image(image, max_resolution=512 * 512, resize_short_edge=None):
h, w = image.shape[:2]
if resize_short_edge is not None:
k = resize_short_edge / min(h, w)
else:
k = max_resolution / (h * w)
k = k**0.5
h = int(np.round(h * k / 64)) * 64
w = int(np.round(w * k / 64)) * 64
image = cv2.resize(image, (w, h), interpolation=cv2.INTER_LANCZOS4)
return image
# make uc and prompt shapes match via padding for long prompts
null_cond = None
def fix_cond_shapes(model, prompt_condition, uc):
if uc is None:
return prompt_condition, uc
global null_cond
if null_cond is None:
null_cond = model.get_learned_conditioning([""])
while prompt_condition.shape[1] > uc.shape[1]:
uc = torch.cat((uc, null_cond.repeat((uc.shape[0], 1, 1))), axis=1)
while prompt_condition.shape[1] < uc.shape[1]:
prompt_condition = torch.cat((prompt_condition, null_cond.repeat((prompt_condition.shape[0], 1, 1))), axis=1)
return prompt_condition, uc