File size: 3,113 Bytes
9420338
68c1b6b
 
0c73150
 
 
73a7480
9420338
 
6cfc2b1
 
0c73150
6cfc2b1
 
 
9420338
 
 
 
3ec36bb
9420338
 
 
 
73a7480
9420338
 
 
 
 
 
6cfc2b1
9420338
 
 
 
0c73150
9420338
 
 
0c73150
9420338
 
 
 
 
79b1dce
9420338
 
 
 
 
79b1dce
9420338
 
68c1b6b
0c73150
68c1b6b
 
 
 
 
 
 
469542a
6cfc2b1
73a7480
 
0c73150
b17c1e6
0c73150
 
3894e65
6cfc2b1
73a7480
0c73150
6cfc2b1
 
0c73150
 
6cfc2b1
 
 
0c73150
6cfc2b1
0c73150
 
 
 
 
6cfc2b1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import streamlit as st
import datetime
# from .utils import PACKAGE_ROOT
# from lrt.utils.functions import template

APP_VERSION = 'v0.1.0'


def render_sidebar():
    icons = f'''
    <center>
    <a href="https://github.com/leoxiang66/research-trends-analysis"><img src = "https://cdn-icons-png.flaticon.com/512/733/733609.png" width="23"></img></a>  <a href="mailto:[email protected]"><img src="https://cdn-icons-png.flaticon.com/512/646/646094.png" alt="email" width = "27" ></a>
    </center>
    '''

    sidebar_markdown = f'''

    <center>
    <h1>
    TrendFlow
    </h1>


    <code>
    {APP_VERSION}
    </code>


    </center>


    {icons}

    ---

    ## Choose the Paper Search Platforms'''
    st.sidebar.markdown(sidebar_markdown, unsafe_allow_html=True)
    # elvsier = st.sidebar.checkbox('Elvsier',value=True)
    # IEEE = st.sidebar.checkbox('IEEE',value=False)
    # google = st.sidebar.checkbox('Google Scholar')
    platforms = st.sidebar.multiselect('Platforms', options=
    [
        # 'Elvsier',
        'IEEE',
        # 'Google Scholar',
        'Arxiv',
        'Paper with Code'
    ], default=[
        # 'Elvsier',
        'IEEE',
        # 'Google Scholar',
        'Arxiv',
        'Paper with Code'
    ])

    st.sidebar.markdown('## Choose the max number of papers to search')
    number_papers = st.sidebar.slider('number', 10, 100, 20, 5)

    st.sidebar.markdown('## Choose the start year of publication')
    this_year = datetime.date.today().year
    start_year = st.sidebar.slider('year start:', 2000, this_year, 2010, 1)

    st.sidebar.markdown('## Choose the end year of publication')
    end_year = st.sidebar.slider('year end:', 2000, this_year, this_year, 1)

    with st.sidebar:
        st.markdown('## Adjust hyperparameters')
        with st.expander('Clustering Options'):
            standardization = st.selectbox('1) Standardization before clustering', options=['no', 'yes'], index=0)
            dr = st.selectbox('2) Dimension reduction', options=['none', 'pca'], index=0)
            tmp = min(number_papers, 15)
            max_k = st.slider('3) Max number of clusters', 2, tmp, tmp // 2)
            cluster_model = st.selectbox('4) Clustering model', options=['Gaussian Mixture Model', 'K-means'], index=0)

        with st.expander('Keyphrases Generation Options'):
            model_cpt = st.selectbox(label='Model checkpoint', options=['KeyBart', 'KeyBartAdapter', 'keyphrase-transformer'], index=0)

        st.markdown('---')
        st.markdown(icons, unsafe_allow_html=True)
        st.markdown(f'''<center>Copyright © 2022 - {datetime.datetime.now().year} by Tao Xiang</center>''', unsafe_allow_html=True)

    # st.sidebar.markdown('## Choose the number of clusters')
    # k = st.sidebar.slider('number',1,10,3)

    return platforms, number_papers, start_year, end_year, dict(
        dimension_reduction=dr,
        max_k=max_k,
        model_cpt=model_cpt,
        standardization=True if standardization == 'yes' else False,
        cluster_model='gmm' if cluster_model == 'Gaussian Mixture Model' else 'kmeans-euclidean'
    )