Spaces:
Running
Running
from typing import Any, Dict, Optional | |
from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
from diffusers.schedulers import KarrasDiffusionSchedulers | |
import numpy | |
import torch | |
import torch.nn as nn | |
import torch.utils.checkpoint | |
import torch.distributed | |
import transformers | |
from collections import OrderedDict | |
from PIL import Image | |
from torchvision import transforms | |
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer | |
import diffusers | |
from diffusers import ( | |
AutoencoderKL, | |
DDPMScheduler, | |
DiffusionPipeline, | |
EulerAncestralDiscreteScheduler, | |
UNet2DConditionModel, | |
ImagePipelineOutput | |
) | |
from diffusers.image_processor import VaeImageProcessor | |
from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0 | |
from diffusers.utils.import_utils import is_xformers_available | |
def to_rgb_image(maybe_rgba: Image.Image): | |
if maybe_rgba.mode == 'RGB': | |
return maybe_rgba | |
elif maybe_rgba.mode == 'RGBA': | |
rgba = maybe_rgba | |
img = numpy.random.randint(255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8) | |
img = Image.fromarray(img, 'RGB') | |
img.paste(rgba, mask=rgba.getchannel('A')) | |
return img | |
else: | |
raise ValueError("Unsupported image type.", maybe_rgba.mode) | |
class ReferenceOnlyAttnProc(torch.nn.Module): | |
def __init__( | |
self, | |
chained_proc, | |
enabled=False, | |
name=None | |
) -> None: | |
super().__init__() | |
self.enabled = enabled | |
self.chained_proc = chained_proc | |
self.name = name | |
def __call__( | |
self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None, | |
mode="w", ref_dict: dict = None, is_cfg_guidance = False | |
) -> Any: | |
if encoder_hidden_states is None: | |
encoder_hidden_states = hidden_states | |
if self.enabled and is_cfg_guidance: | |
res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask) | |
hidden_states = hidden_states[1:] | |
encoder_hidden_states = encoder_hidden_states[1:] | |
if self.enabled: | |
if mode == 'w': | |
ref_dict[self.name] = encoder_hidden_states | |
elif mode == 'r': | |
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1) | |
elif mode == 'm': | |
encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1) | |
else: | |
assert False, mode | |
res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask) | |
if self.enabled and is_cfg_guidance: | |
res = torch.cat([res0, res]) | |
return res | |
class RefOnlyNoisedUNet(torch.nn.Module): | |
def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None: | |
super().__init__() | |
self.unet = unet | |
self.train_sched = train_sched | |
self.val_sched = val_sched | |
unet_lora_attn_procs = dict() | |
for name, _ in unet.attn_processors.items(): | |
if torch.__version__ >= '2.0': | |
default_attn_proc = AttnProcessor2_0() | |
elif is_xformers_available(): | |
default_attn_proc = XFormersAttnProcessor() | |
else: | |
default_attn_proc = AttnProcessor() | |
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc( | |
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name | |
) | |
unet.set_attn_processor(unet_lora_attn_procs) | |
def __getattr__(self, name: str): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.unet, name) | |
def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs): | |
if is_cfg_guidance: | |
encoder_hidden_states = encoder_hidden_states[1:] | |
class_labels = class_labels[1:] | |
self.unet( | |
noisy_cond_lat, timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
class_labels=class_labels, | |
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), | |
**kwargs | |
) | |
def forward( | |
self, sample, timestep, encoder_hidden_states, class_labels=None, | |
*args, cross_attention_kwargs, | |
down_block_res_samples=None, mid_block_res_sample=None, | |
**kwargs | |
): | |
cond_lat = cross_attention_kwargs['cond_lat'] | |
is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False) | |
noise = torch.randn_like(cond_lat) | |
if self.training: | |
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) | |
noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep) | |
else: | |
noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1)) | |
noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1)) | |
ref_dict = {} | |
self.forward_cond( | |
noisy_cond_lat, timestep, | |
encoder_hidden_states, class_labels, | |
ref_dict, is_cfg_guidance, **kwargs | |
) | |
weight_dtype = self.unet.dtype | |
return self.unet( | |
sample, timestep, | |
encoder_hidden_states, *args, | |
class_labels=class_labels, | |
cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance), | |
down_block_additional_residuals=[ | |
sample.to(dtype=weight_dtype) for sample in down_block_res_samples | |
] if down_block_res_samples is not None else None, | |
mid_block_additional_residual=( | |
mid_block_res_sample.to(dtype=weight_dtype) | |
if mid_block_res_sample is not None else None | |
), | |
**kwargs | |
) | |
def scale_latents(latents): | |
latents = (latents - 0.22) * 0.75 | |
return latents | |
def unscale_latents(latents): | |
latents = latents / 0.75 + 0.22 | |
return latents | |
def scale_image(image): | |
image = image * 0.5 / 0.8 | |
return image | |
def unscale_image(image): | |
image = image / 0.5 * 0.8 | |
return image | |
class DepthControlUNet(torch.nn.Module): | |
def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None: | |
super().__init__() | |
self.unet = unet | |
if controlnet is None: | |
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet) | |
else: | |
self.controlnet = controlnet | |
DefaultAttnProc = AttnProcessor2_0 | |
if is_xformers_available(): | |
DefaultAttnProc = XFormersAttnProcessor | |
self.controlnet.set_attn_processor(DefaultAttnProc()) | |
self.conditioning_scale = conditioning_scale | |
def __getattr__(self, name: str): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.unet, name) | |
def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs): | |
cross_attention_kwargs = dict(cross_attention_kwargs) | |
control_depth = cross_attention_kwargs.pop('control_depth') | |
down_block_res_samples, mid_block_res_sample = self.controlnet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
controlnet_cond=control_depth, | |
conditioning_scale=self.conditioning_scale, | |
return_dict=False, | |
) | |
return self.unet( | |
sample, | |
timestep, | |
encoder_hidden_states=encoder_hidden_states, | |
down_block_res_samples=down_block_res_samples, | |
mid_block_res_sample=mid_block_res_sample, | |
cross_attention_kwargs=cross_attention_kwargs | |
) | |
class ModuleListDict(torch.nn.Module): | |
def __init__(self, procs: dict) -> None: | |
super().__init__() | |
self.keys = sorted(procs.keys()) | |
self.values = torch.nn.ModuleList(procs[k] for k in self.keys) | |
def __getitem__(self, key): | |
return self.values[self.keys.index(key)] | |
class SuperNet(torch.nn.Module): | |
def __init__(self, state_dict: Dict[str, torch.Tensor]): | |
super().__init__() | |
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys())) | |
self.layers = torch.nn.ModuleList(state_dict.values()) | |
self.mapping = dict(enumerate(state_dict.keys())) | |
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())} | |
# .processor for unet, .self_attn for text encoder | |
self.split_keys = [".processor", ".self_attn"] | |
# we add a hook to state_dict() and load_state_dict() so that the | |
# naming fits with `unet.attn_processors` | |
def map_to(module, state_dict, *args, **kwargs): | |
new_state_dict = {} | |
for key, value in state_dict.items(): | |
num = int(key.split(".")[1]) # 0 is always "layers" | |
new_key = key.replace(f"layers.{num}", module.mapping[num]) | |
new_state_dict[new_key] = value | |
return new_state_dict | |
def remap_key(key, state_dict): | |
for k in self.split_keys: | |
if k in key: | |
return key.split(k)[0] + k | |
return key.split('.')[0] | |
def map_from(module, state_dict, *args, **kwargs): | |
all_keys = list(state_dict.keys()) | |
for key in all_keys: | |
replace_key = remap_key(key, state_dict) | |
new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}") | |
state_dict[new_key] = state_dict[key] | |
del state_dict[key] | |
self._register_state_dict_hook(map_to) | |
self._register_load_state_dict_pre_hook(map_from, with_module=True) | |
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline): | |
tokenizer: transformers.CLIPTokenizer | |
text_encoder: transformers.CLIPTextModel | |
vision_encoder: transformers.CLIPVisionModelWithProjection | |
feature_extractor_clip: transformers.CLIPImageProcessor | |
unet: UNet2DConditionModel | |
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers | |
vae: AutoencoderKL | |
ramping: nn.Linear | |
feature_extractor_vae: transformers.CLIPImageProcessor | |
depth_transforms_multi = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]) | |
]) | |
def __init__( | |
self, | |
vae: AutoencoderKL, | |
text_encoder: CLIPTextModel, | |
tokenizer: CLIPTokenizer, | |
unet: UNet2DConditionModel, | |
scheduler: KarrasDiffusionSchedulers, | |
vision_encoder: transformers.CLIPVisionModelWithProjection, | |
feature_extractor_clip: CLIPImageProcessor, | |
feature_extractor_vae: CLIPImageProcessor, | |
ramping_coefficients: Optional[list] = None, | |
safety_checker=None, | |
): | |
DiffusionPipeline.__init__(self) | |
self.register_modules( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, | |
unet=unet, scheduler=scheduler, safety_checker=None, | |
vision_encoder=vision_encoder, | |
feature_extractor_clip=feature_extractor_clip, | |
feature_extractor_vae=feature_extractor_vae | |
) | |
self.register_to_config(ramping_coefficients=ramping_coefficients) | |
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
def prepare(self): | |
train_sched = DDPMScheduler.from_config(self.scheduler.config) | |
if isinstance(self.unet, UNet2DConditionModel): | |
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval() | |
def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0): | |
self.prepare() | |
self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale) | |
return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)])) | |
def encode_condition_image(self, image: torch.Tensor): | |
image = self.vae.encode(image).latent_dist.sample() | |
return image | |
def __call__( | |
self, | |
image: Image.Image = None, | |
prompt = "", | |
*args, | |
num_images_per_prompt: Optional[int] = 1, | |
guidance_scale=4.0, | |
depth_image: Image.Image = None, | |
output_type: Optional[str] = "pil", | |
width=640, | |
height=960, | |
num_inference_steps=28, | |
return_dict=True, | |
**kwargs | |
): | |
self.prepare() | |
if image is None: | |
raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.") | |
assert not isinstance(image, torch.Tensor) | |
image = to_rgb_image(image) | |
image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values | |
image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values | |
if depth_image is not None and hasattr(self.unet, "controlnet"): | |
depth_image = to_rgb_image(depth_image) | |
depth_image = self.depth_transforms_multi(depth_image).to( | |
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype | |
) | |
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype) | |
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) | |
cond_lat = self.encode_condition_image(image) | |
if guidance_scale > 1: | |
negative_lat = self.encode_condition_image(torch.zeros_like(image)) | |
cond_lat = torch.cat([negative_lat, cond_lat]) | |
encoded = self.vision_encoder(image_2, output_hidden_states=False) | |
global_embeds = encoded.image_embeds | |
global_embeds = global_embeds.unsqueeze(-2) | |
if hasattr(self, "encode_prompt"): | |
encoder_hidden_states = self.encode_prompt( | |
prompt, | |
self.device, | |
num_images_per_prompt, | |
False | |
)[0] | |
else: | |
encoder_hidden_states = self._encode_prompt( | |
prompt, | |
self.device, | |
num_images_per_prompt, | |
False | |
) | |
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp | |
cak = dict(cond_lat=cond_lat) | |
if hasattr(self.unet, "controlnet"): | |
cak['control_depth'] = depth_image | |
latents: torch.Tensor = super().__call__( | |
None, | |
*args, | |
cross_attention_kwargs=cak, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_images_per_prompt, | |
prompt_embeds=encoder_hidden_states, | |
num_inference_steps=num_inference_steps, | |
output_type='latent', | |
width=width, | |
height=height, | |
**kwargs | |
).images | |
latents = unscale_latents(latents) | |
if not output_type == "latent": | |
image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]) | |
else: | |
image = latents | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |