MedChat / app.py
Aditya0619's picture
Update app.py
9910dfa verified
import gradio as gr
from transformers import pipeline
# Initialize the conversational model pipeline
chatbot_pipeline = pipeline("text-generation", model="Aditya0619/Medbot")
# Chatbot response function
def respond(message, history, system_message, max_tokens, temperature, top_p):
if history is None:
history = []
# Build conversation context
chat_input = ""
for user_input, bot_response in history:
chat_input += f"User: {user_input}\nBot: {bot_response}\n"
chat_input += f"User: {message}\nBot:"
# Generate response
response = chatbot_pipeline(
chat_input,
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=50256 # Avoid padding issues with GPT-2 models
)[0]["generated_text"].split("Bot:")[-1].strip()
# Update history
history.append((message, response))
return history, history
# API function to expose chatbot responses programmatically
def api_chat(message, history=None):
if history is None:
history = []
updated_history, _ = respond(
message, history, "", max_tokens=250, temperature=0.7, top_p=0.9
)
return {"response": updated_history[-1][1], "history": updated_history}
# Gradio UI layout
with gr.Blocks() as demo:
gr.Markdown("# 🤖 AI Chatbot with API Access\nChat with AI or use the API!")
# Configurable parameters in an accordion menu
with gr.Row():
with gr.Accordion("⚙️ Configure Chatbot Settings", open=False):
system_message = gr.Textbox(label="System Message (Optional)", placeholder="e.g., You are a helpful assistant.")
max_tokens = gr.Slider(label="Max Tokens", minimum=50, maximum=500, value=250, step=10)
temperature = gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, value=0.7, step=0.1)
top_p = gr.Slider(label="Top P", minimum=0.0, maximum=1.0, value=0.9, step=0.1)
# Chatbot interface and user input field
chatbot = gr.Chatbot(label="Chat with AI")
user_input = gr.Textbox(label="Your Message", placeholder="Type a message...", lines=2)
state = gr.State([]) # Store conversation history
submit = gr.Button("Send")
# Link input to chatbot response
submit.click(
respond,
inputs=[user_input, state, system_message, max_tokens, temperature, top_p],
outputs=[chatbot, state]
)
# Initial greeting message
demo.load(lambda: [("Hi! How can I assist you today?", "")], outputs=chatbot)
# Launch Gradio app and print the hosted link in terminal
print("Launching the Gradio app...")
ui_url = demo.launch(share=True, server_name="0.0.0.0", server_port=7860)
print(f"App hosted at: {ui_url}")
# API endpoint setup with Gradio
api = gr.Interface(fn=api_chat, inputs=[gr.Textbox(), gr.State([])], outputs="json")
api_url = api.launch(share=True, server_name="0.0.0.0", server_port=7861)
print(f"API hosted at: {api_url}")