Spaces:
Sleeping
Sleeping
import pandas as pd | |
import openai | |
from data import data as df | |
import numpy as np | |
import os | |
openai.api_key = os.environ.get("openai") | |
def cosine_similarity(a, b): | |
return np.dot(a, b) / (np.linalg.norm(a) * np.linalg.norm(b)) | |
def get_embedding(text, model="text-embedding-ada-002"): | |
try: | |
text = text.replace("\n", " ") | |
except: | |
None | |
return openai.embeddings.create(input = [text], model=model).data[0].embedding | |
def get_embedding2(text, model="text-embedding-ada-002"): | |
try: | |
text = text.replace("\n", " ") | |
except: | |
None | |
try: | |
return openai.Embedding.create(input = [text], model=model)['data'][0]['embedding'] | |
except: | |
time.sleep(2) | |
def search_cv(search, nb=3, pprint=True): | |
embedding = get_embedding(search, model='text-embedding-ada-002') | |
df_replicate = df.copy() | |
def wrap_cos(x,y): | |
try: | |
res = cosine_similarity(x,y) | |
except: | |
res = 0 | |
return res | |
df_replicate['similarities'] = df_replicate.embedding.apply(lambda x: wrap_cos(x, embedding)) | |
res = df_replicate.sort_values('similarities', ascending=False).head(int(nb)) | |
return res | |
def get_cv(text, nb): | |
result = search_cv(text,nb).to_dict(orient="records") | |
final_str = "" | |
for r in result: | |
final_str += "#### Candidat avec " + str(round(r["similarities"]*100,2)) + "% de similarité :\n"+ str(r["summary"]).replace("#","") | |
final_str += "\n\n[-> Lien vers le CV complet]("+ str(r["url"]) + ')' | |
final_str += "\n\n-----------------------------------------------------------------------------------------------------\n\n" | |
final_str = final_str.replace("`", "") | |
return final_str |