Spaces:
Build error
Build error
File size: 12,637 Bytes
01523b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
from __future__ import annotations
from typing import List, Union, Optional, Any, TYPE_CHECKING
from collections import defaultdict
from pydantic import Field
import numpy as np
from datetime import datetime as dt
import re
from agentverse.llms.openai import get_embedding
from sklearn.metrics.pairwise import cosine_similarity
from agentverse.message import Message
from agentverse.memory import BaseMemory
from agentverse.logging import logger
from . import memory_manipulator_registry
from .base import BaseMemoryManipulator
if TYPE_CHECKING:
from agentverse.memory import VectorStoreMemory
from agentverse.agents.base import BaseAgent
IMPORTANCE_PROMPT = """On the scale of 1 to 10, where 1 is purely mundane \
(e.g., brushing teeth, making bed) and 10 is \
extremely poignant (e.g., a break up, college \
acceptance), rate the likely poignancy of the \
following piece of memory. \
If you think it's too hard to rate it, you can give an inaccurate assessment. \
The content or people mentioned is not real. You can hypothesis any reasonable context. \
Please strictly only output one number. \
Memory: {} \
Rating: """
IMMEDIACY_PROMPT = """On the scale of 1 to 10, where 1 is requiring no short time attention\
(e.g., a bed is in the room) and 10 is \
needing quick attention or immediate response(e.g., being required a reply by others), rate the likely immediacy of the \
following statement. \
If you think it's too hard to rate it, you can give an inaccurate assessment. \
The content or people mentioned is not real. You can hypothesis any reasonable context. \
Please strictly only output one number. \
Memory: {} \
Rating: """
QUESTION_PROMPT = """Given only the information above, what are 3 most salient \
high-level questions we can answer about the subjects in the statements?"""
INSIGHT_PROMPT = """What at most 5 high-level insights can you infer from \
the above statements? Only output insights with high confidence.
example format: insight (because of 1, 5, 3)"""
@memory_manipulator_registry.register("reflection")
class Reflection(BaseMemoryManipulator):
memory: VectorStoreMemory = None
agent: BaseAgent = None
reflection: str = ""
importance_threshold: int = 10
accumulated_importance: int = 0
memory2importance: dict = {}
memory2immediacy: dict = {}
memory2time: defaultdict = Field(default=defaultdict(dict))
# TODO newly added func from generative agents
def manipulate_memory(self) -> None:
# reflect here
if self.should_reflect():
logger.debug(
f"Agent {self.agent.name} is now doing reflection since accumulated_importance={self.accumulated_importance} < reflection_threshold={self.importance_threshold}"
)
self.reflection = self.reflect()
return self.reflection
else:
logger.debug(
f"Agent {self.agent.name} doesn't reflect since accumulated_importance={self.accumulated_importance} < reflection_threshold={self.importance_threshold}"
)
return ""
def get_accumulated_importance(self):
accumulated_importance = 0
for memory in self.memory.messages:
if (
memory.content not in self.memory2importance
or memory.content not in self.memory2immediacy
):
self.memory2importance[memory.content] = self.get_importance(
memory.content
)
self.memory2immediacy[memory.content] = self.get_immediacy(
memory.content
)
for score in self.memory2importance.values():
accumulated_importance += score
self.accumulated_importance = accumulated_importance
return accumulated_importance
def should_reflect(self):
if self.get_accumulated_importance() >= self.importance_threshold:
# double the importance_threshold
self.importance_threshold *= 2
return True
else:
return False
def get_questions(self, texts):
prompt = "\n".join(texts) + "\n" + QUESTION_PROMPT
result = self.agent.llm.generate_response(prompt)
result = result.content
questions = [q for q in result.split("\n") if len(q.strip()) > 0]
questions = questions[:3]
return questions
def get_insights(self, statements):
prompt = ""
for i, st in enumerate(statements):
prompt += str(i + 1) + ". " + st + "\n"
prompt += INSIGHT_PROMPT
result = self.agent.llm.generate_response(prompt)
result = result.content
insights = [isg for isg in result.split("\n") if len(isg.strip()) > 0][:5]
insights = [".".join(i.split(".")[1:]) for i in insights]
# remove insight pointers for now
insights = [i.split("(")[0].strip() for i in insights]
return insights
def get_importance(self, content: str):
"""
Exploit GPT to evaluate the importance of this memory
"""
prompt = IMPORTANCE_PROMPT.format(content)
result = self.memory.llm.generate_response(prompt)
try:
score = int(re.findall(r"\s*(\d+)\s*", result.content)[0])
except Exception as e:
logger.warn(
f"Found error {e} Abnormal result of importance rating '{result}'. Setting default value"
)
score = 0
return score
def get_immediacy(self, content: str):
"""
Exploit GPT to evaluate the immediacy of this memory
"""
prompt = IMMEDIACY_PROMPT.format(content)
result = self.memory.llm.generate_response(prompt)
try:
score = int(re.findall(r"\s*(\d+)\s*", result.content)[0])
except Exception as e:
logger.warn(
f"Found error {e} Abnormal result of importance rating '{result}'. Setting default value"
)
score = 0
return score
def query_similarity(
self,
text: Union[str, List[str]],
k: int,
memory_bank: List,
current_time=dt.now(),
nms_threshold=0.99,
) -> List[str]:
"""
get top-k entry based on recency, relevance, importance, immediacy
The query result can be Short-term or Long-term queried result.
formula is
`score= sim(q,v) *max(LTM_score, STM_score)`
`STM_score=time_score(createTime)*immediacy`
`LTM_score=time_score(accessTime)*importance`
time score is exponential decay weight. stm decays faster.
The query supports querying based on multiple texts and only gives non-overlapping results
If nms_threshold is not 1, nms mechanism if activated. By default,
use soft nms with modified iou base(score starts to decay iff cos sim is higher than this value,
and decay weight at this value if 0. rather than 1-threshold).
Args:
text: str
k: int
memory_bank: List
current_time: dt.now
nms_threshold: float = 0.99
Returns: List[str]
"""
assert len(text) > 0
texts = [text] if isinstance(text, str) else text
maximum_score = None
for text in texts:
embedding = get_embedding(text)
score = []
for memory in memory_bank:
if memory.content not in self.memory2time:
self.memory2time[memory.content]["last_access_time"] = dt.now()
self.memory2time[memory.content]["create_time"] = dt.now()
last_access_time_diff = (
current_time - self.memory2time[memory.content]["last_access_time"]
).total_seconds() // 3600
recency = np.power(
0.99, last_access_time_diff
) # TODO: review the metaparameter 0.99
create_time_diff = (
current_time - self.memory2time[memory.content]["create_time"]
).total_seconds() // 60
instancy = np.power(
0.90, create_time_diff
) # TODO: review the metaparameter 0.90
relevance = cosine_similarity(
np.array(embedding).reshape(1, -1),
np.array(self.memory.memory2embedding[memory.content]).reshape(
1, -1
),
)[0][0]
if (
memory.content not in self.memory2importance
or memory.content not in self.memory2immediacy
):
self.memory2importance[memory.content] = self.get_importance(
memory.content
)
self.memory2immediacy[memory.content] = self.get_immediacy(
memory.content
)
importance = self.memory2importance[memory.content] / 10
immediacy = self.memory2immediacy[memory.content] / 10
ltm_w = recency * importance
stm_w = instancy * immediacy
score.append(relevance * np.maximum(ltm_w, stm_w))
score = np.array(score)
if maximum_score is not None:
maximum_score = np.maximum(score, maximum_score)
else:
maximum_score = score
if nms_threshold == 1.0:
# no nms is triggered
top_k_indices = np.argsort(maximum_score)[-k:][::-1]
else:
# TODO: soft-nms
assert 0 <= nms_threshold < 1
top_k_indices = []
while len(top_k_indices) < min(k, len(memory_bank)):
top_index = np.argmax(maximum_score)
top_k_indices.append(top_index)
maximum_score[top_index] = -1 # anything to prevent being chosen again
top_embedding = self.memory.memory2embedding[
memory_bank[top_index].content
]
cos_sim = cosine_similarity(
np.array(top_embedding).reshape(1, -1),
np.array(
[
self.memory.memory2embedding[memory.content]
for memory in memory_bank
]
),
)[0]
score_weight = np.ones_like(maximum_score)
score_weight[cos_sim >= nms_threshold] -= (
cos_sim[cos_sim >= nms_threshold] - nms_threshold
) / (1 - nms_threshold)
maximum_score = maximum_score * score_weight
# access them and refresh the access time
for i in top_k_indices:
self.memory2time[memory_bank[i].content]["last_access_time"] = current_time
# sort them in time periods. if the data tag is 'observation', ad time info output.
top_k_indices = sorted(
top_k_indices,
key=lambda x: self.memory2time[memory_bank[x].content]["create_time"],
)
query_results = []
for i in top_k_indices:
query_result = memory_bank[i].content
query_results.append(query_result)
return query_results
def get_memories_of_interest_oneself(self):
memories_of_interest = []
for memory in self.memory.messages[-100:]:
if memory.sender == self.agent.name:
memories_of_interest.append(memory)
return memories_of_interest
def reflect(self):
"""
initiate a reflection that inserts high level knowledge to memory
"""
memories_of_interest = self.get_memories_of_interest_oneself()
questions = self.get_questions([m.content for m in memories_of_interest])
statements = self.query_similarity(
questions, len(questions) * 10, memories_of_interest
)
insights = self.get_insights(statements)
logger.info(self.agent.name + f" Insights: {insights}")
for insight in insights:
# convert insight to messages
# TODO currently only oneself can see its own reflection
insight_message = Message(
content=insight, sender=self.agent.name, receiver={self.agent.name}
)
self.memory.add_message([insight_message])
reflection = "\n".join(insights)
return reflection
def reset(self) -> None:
self.reflection = ""
|