agentVerse / agentverse /tasksolving.py
AgentVerse's picture
bump version to 0.1.8
01523b5
raw
history blame
3.3 kB
import asyncio
import os
import copy
import logging
from agentverse.environments.tasksolving_env.basic import BasicEnvironment
from agentverse.initialization import load_agent, load_environment, prepare_task_config
from agentverse.utils import AGENT_TYPES
openai_logger = logging.getLogger("openai")
openai_logger.setLevel(logging.WARNING)
class TaskSolving:
environment: BasicEnvironment
task: str = ""
logs: list = []
def __init__(self, environment: BasicEnvironment, task: str = ""):
self.environment = environment
self.task = task
@classmethod
def from_task(cls, task: str, tasks_dir: str):
"""Build an AgentVerse from a task name.
The task name should correspond to a directory in `tasks` directory.
Then this method will load the configuration from the yaml file in that directory.
"""
# Prepare the config of the task
task_config = prepare_task_config(task, tasks_dir)
# Build the environment
env_config = task_config["environment"]
# Build agents for all pipeline (task)
agents = {}
for i, agent_config in enumerate(task_config["agents"]):
agent_type = AGENT_TYPES(i)
if i == 2 and agent_config.get("agent_type", "") == "critic":
agent = load_agent(agent_config)
agents[agent_type] = [
copy.deepcopy(agent)
for _ in range(task_config.get("cnt_agents", 1) - 1)
]
else:
agents[agent_type] = load_agent(agent_config)
env_config["agents"] = agents
env_config["task_description"] = task_config.get("task_description", "")
env_config["max_rounds"] = task_config.get("max_rounds", 3)
environment: BasicEnvironment = load_environment(env_config)
return cls(environment=environment, task=task)
def run(self):
"""Run the environment from scratch until it is done."""
self.environment.reset()
self.logs = []
advice = "No advice yet."
previous_plan = "No solution yet."
while not self.environment.is_done():
result, advice, previous_plan, logs, success = asyncio.run(
self.environment.step(advice, previous_plan)
)
self.logs += logs
self.environment.report_metrics()
self.save_result(previous_plan, result, self.environment.get_spend())
return previous_plan, result, self.logs
def singleagent_thinking(self, preliminary_solution, advice) -> str:
preliminary_solution = self.environment.solve(
former_solution=preliminary_solution,
critic_opinions=[(self.environment.evaluator, advice)],
)
return preliminary_solution
def reset(self):
self.environment.reset()
def save_result(self, plan: str, result: str, spend: float):
"""Save the result to the result file"""
result_file_path = "./results/" + self.task + ".txt"
os.makedirs(os.path.dirname(result_file_path), exist_ok=True)
with open(result_file_path, "w") as f:
f.write("[Final Plan]\n" + plan + "\n\n")
f.write("[Result]\n" + result)
f.write(f"[Spent]\n${spend}")