Spaces:
Runtime error
Runtime error
AhmedIbrahim007
commited on
Upload 36 files
Browse files- .gitattributes +2 -0
- .idea/.gitignore +8 -0
- .idea/inspectionProfiles/Project_Default.xml +22 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +7 -0
- .idea/modules.xml +8 -0
- .idea/src.iml +14 -0
- .idea/workspace.xml +59 -0
- REQUIREMENTS.txt +12 -0
- __pycache__/extract_frames.cpython-310.pyc +0 -0
- __pycache__/extract_frames.cpython-311.pyc +0 -0
- __pycache__/extract_frames.cpython-312.pyc +0 -0
- __pycache__/get_every_fram_path.cpython-310.pyc +0 -0
- __pycache__/get_every_fram_path.cpython-311.pyc +0 -0
- __pycache__/get_every_fram_path.cpython-312.pyc +0 -0
- __pycache__/grapher.cpython-310.pyc +0 -0
- __pycache__/grapher.cpython-311.pyc +0 -0
- __pycache__/main_emotion_classifier.cpython-310.pyc +0 -0
- __pycache__/main_emotion_classifier.cpython-311.pyc +0 -0
- app.py +61 -0
- detection_models/haarcascade_frontalface_default.xml +0 -0
- emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5 +0 -0
- extract_frames.py +49 -0
- get_every_fram_path.py +15 -0
- grapher.py +107 -0
- main_emotion_classifier.py +114 -0
- test-video.mp4 +3 -0
- test.png +3 -0
- utils/__pycache__/datasets.cpython-310.pyc +0 -0
- utils/__pycache__/datasets.cpython-311.pyc +0 -0
- utils/__pycache__/inference.cpython-310.pyc +0 -0
- utils/__pycache__/inference.cpython-311.pyc +0 -0
- utils/__pycache__/preprocessor.cpython-310.pyc +0 -0
- utils/__pycache__/preprocessor.cpython-311.pyc +0 -0
- utils/datasets.py +149 -0
- utils/inference.py +37 -0
- utils/preprocessor.py +27 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test-video.mp4 filter=lfs diff=lfs merge=lfs -text
|
37 |
+
test.png filter=lfs diff=lfs merge=lfs -text
|
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredPackages">
|
6 |
+
<value>
|
7 |
+
<list size="9">
|
8 |
+
<item index="0" class="java.lang.String" itemvalue="tqdm" />
|
9 |
+
<item index="1" class="java.lang.String" itemvalue="pandas" />
|
10 |
+
<item index="2" class="java.lang.String" itemvalue="tensorboard" />
|
11 |
+
<item index="3" class="java.lang.String" itemvalue="seaborn" />
|
12 |
+
<item index="4" class="java.lang.String" itemvalue="tensorboardX" />
|
13 |
+
<item index="5" class="java.lang.String" itemvalue="sklearn" />
|
14 |
+
<item index="6" class="java.lang.String" itemvalue="torch" />
|
15 |
+
<item index="7" class="java.lang.String" itemvalue="numpy" />
|
16 |
+
<item index="8" class="java.lang.String" itemvalue="torchvision" />
|
17 |
+
</list>
|
18 |
+
</value>
|
19 |
+
</option>
|
20 |
+
</inspection_tool>
|
21 |
+
</profile>
|
22 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="Black">
|
4 |
+
<option name="sdkName" value="Python 3.10 (src)" />
|
5 |
+
</component>
|
6 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.10 (src)" project-jdk-type="Python SDK" />
|
7 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/src.iml" filepath="$PROJECT_DIR$/.idea/src.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/src.iml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$">
|
5 |
+
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
6 |
+
</content>
|
7 |
+
<orderEntry type="inheritedJdk" />
|
8 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
9 |
+
</component>
|
10 |
+
<component name="PyDocumentationSettings">
|
11 |
+
<option name="format" value="PLAIN" />
|
12 |
+
<option name="myDocStringFormat" value="Plain" />
|
13 |
+
</component>
|
14 |
+
</module>
|
.idea/workspace.xml
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="AutoImportSettings">
|
4 |
+
<option name="autoReloadType" value="SELECTIVE" />
|
5 |
+
</component>
|
6 |
+
<component name="ChangeListManager">
|
7 |
+
<list default="true" id="5d6e565a-1460-4a7f-8f74-e2b5df1c6b88" name="Changes" comment="" />
|
8 |
+
<option name="SHOW_DIALOG" value="false" />
|
9 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
10 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
11 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
12 |
+
</component>
|
13 |
+
<component name="ProjectColorInfo">{
|
14 |
+
"associatedIndex": 1
|
15 |
+
}</component>
|
16 |
+
<component name="ProjectId" id="2lZgqQ9N8xKvJ5dtQsXYgjs4WBz" />
|
17 |
+
<component name="ProjectViewState">
|
18 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
19 |
+
<option name="showLibraryContents" value="true" />
|
20 |
+
</component>
|
21 |
+
<component name="PropertiesComponent"><![CDATA[{
|
22 |
+
"keyToString": {
|
23 |
+
"RunOnceActivity.ShowReadmeOnStart": "true",
|
24 |
+
"dart.analysis.tool.window.visible": "false",
|
25 |
+
"last_opened_file_path": "D:/collage/gp/ml/future-forge/emotion-detection/face_classification/src",
|
26 |
+
"node.js.detected.package.eslint": "true",
|
27 |
+
"node.js.detected.package.tslint": "true",
|
28 |
+
"node.js.selected.package.eslint": "(autodetect)",
|
29 |
+
"node.js.selected.package.tslint": "(autodetect)",
|
30 |
+
"nodejs_package_manager_path": "npm",
|
31 |
+
"settings.editor.selected.configurable": "com.jetbrains.python.configuration.PyActiveSdkModuleConfigurable",
|
32 |
+
"vue.rearranger.settings.migration": "true"
|
33 |
+
}
|
34 |
+
}]]></component>
|
35 |
+
<component name="SharedIndexes">
|
36 |
+
<attachedChunks>
|
37 |
+
<set>
|
38 |
+
<option value="bundled-js-predefined-d6986cc7102b-7c0b70fcd90d-JavaScript-PY-242.21829.153" />
|
39 |
+
<option value="bundled-python-sdk-464836ebc622-b74155a9e76b-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-242.21829.153" />
|
40 |
+
</set>
|
41 |
+
</attachedChunks>
|
42 |
+
</component>
|
43 |
+
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
44 |
+
<component name="TaskManager">
|
45 |
+
<task active="true" id="Default" summary="Default task">
|
46 |
+
<changelist id="5d6e565a-1460-4a7f-8f74-e2b5df1c6b88" name="Changes" comment="" />
|
47 |
+
<created>1725393203470</created>
|
48 |
+
<option name="number" value="Default" />
|
49 |
+
<option name="presentableId" value="Default" />
|
50 |
+
<updated>1725393203470</updated>
|
51 |
+
<workItem from="1725393204716" duration="916000" />
|
52 |
+
<workItem from="1725394369496" duration="321000" />
|
53 |
+
</task>
|
54 |
+
<servers />
|
55 |
+
</component>
|
56 |
+
<component name="TypeScriptGeneratedFilesManager">
|
57 |
+
<option name="version" value="3" />
|
58 |
+
</component>
|
59 |
+
</project>
|
REQUIREMENTS.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
keras==2.10.0
|
2 |
+
tensorflow
|
3 |
+
pandas==1.4.4
|
4 |
+
numpy==1.23.3
|
5 |
+
h5py==3.7.0
|
6 |
+
statistics==1.0.3.5
|
7 |
+
opencv-python==4.6.0.66
|
8 |
+
scipy==1.9.1
|
9 |
+
matplotlib==3.5.3
|
10 |
+
imageio==2.21.3
|
11 |
+
scikit-image==0.19.3
|
12 |
+
gradio==3.50.2
|
__pycache__/extract_frames.cpython-310.pyc
ADDED
Binary file (897 Bytes). View file
|
|
__pycache__/extract_frames.cpython-311.pyc
ADDED
Binary file (1.57 kB). View file
|
|
__pycache__/extract_frames.cpython-312.pyc
ADDED
Binary file (1.37 kB). View file
|
|
__pycache__/get_every_fram_path.cpython-310.pyc
ADDED
Binary file (497 Bytes). View file
|
|
__pycache__/get_every_fram_path.cpython-311.pyc
ADDED
Binary file (799 Bytes). View file
|
|
__pycache__/get_every_fram_path.cpython-312.pyc
ADDED
Binary file (729 Bytes). View file
|
|
__pycache__/grapher.cpython-310.pyc
ADDED
Binary file (3.1 kB). View file
|
|
__pycache__/grapher.cpython-311.pyc
ADDED
Binary file (6.59 kB). View file
|
|
__pycache__/main_emotion_classifier.cpython-310.pyc
ADDED
Binary file (3.32 kB). View file
|
|
__pycache__/main_emotion_classifier.cpython-311.pyc
ADDED
Binary file (6.5 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
from extract_frames import ExtractFrames
|
4 |
+
from get_every_fram_path import getEveryFramPath
|
5 |
+
from main_emotion_classifier import process, process_single_image
|
6 |
+
from grapher import createGraph
|
7 |
+
|
8 |
+
def process_image(image):
|
9 |
+
# Process the image using your existing function
|
10 |
+
processed_image = process_single_image(image)
|
11 |
+
return processed_image
|
12 |
+
|
13 |
+
def process_video(video_path):
|
14 |
+
# Extract frames from the video and process them
|
15 |
+
output_dir = ExtractFrames(video_path)
|
16 |
+
frame_paths = getEveryFramPath(output_dir)
|
17 |
+
results, most_frequent_emotion = process(frame_paths)
|
18 |
+
|
19 |
+
# Create the emotion graphs from the results
|
20 |
+
createGraph('data/output/results.txt')
|
21 |
+
|
22 |
+
# Return paths to the three generated graphs
|
23 |
+
return [
|
24 |
+
'data/output/emotion_bar_plot.png',
|
25 |
+
'data/output/emotion_stem_plot.png',
|
26 |
+
'data/output/emotionAVG.png'
|
27 |
+
]
|
28 |
+
|
29 |
+
|
30 |
+
def gradio_interface(file):
|
31 |
+
if file is None:
|
32 |
+
return None, None
|
33 |
+
|
34 |
+
file_type = file.name.split('.')[-1].lower()
|
35 |
+
|
36 |
+
if file_type in ['jpg', 'jpeg', 'png', 'bmp']: # Image input
|
37 |
+
image = cv2.imread(file.name)
|
38 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
39 |
+
processed_image = process_image(image)
|
40 |
+
return processed_image, None
|
41 |
+
elif file_type in ['mp4', 'avi', 'mov', 'wmv']: # Video input
|
42 |
+
graph_paths = process_video(file.name)
|
43 |
+
return None, graph_paths
|
44 |
+
else:
|
45 |
+
return None, None
|
46 |
+
|
47 |
+
# Set up the Gradio Interface
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=gradio_interface,
|
50 |
+
inputs=gr.File(label="Upload Image or Video"),
|
51 |
+
outputs=[
|
52 |
+
gr.Image(type="numpy", label="Processed Image (for image uploads)"),
|
53 |
+
gr.Gallery(label="Emotion Distribution Graphs (for video uploads)", columns=3)
|
54 |
+
],
|
55 |
+
title="Face Emotion Recognition",
|
56 |
+
description="Upload an image or video to analyze emotions. For images, the result will show detected faces with emotions. For videos, it will provide graphs of emotion distribution."
|
57 |
+
)
|
58 |
+
|
59 |
+
# Launch the Gradio interface
|
60 |
+
if __name__ == "__main__":
|
61 |
+
iface.launch()
|
detection_models/haarcascade_frontalface_default.xml
ADDED
The diff for this file is too large to render.
See raw diff
|
|
emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5
ADDED
Binary file (873 kB). View file
|
|
extract_frames.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import os
|
3 |
+
|
4 |
+
def ExtractFrames(videoPath):
|
5 |
+
# Path to the video file
|
6 |
+
video_path = videoPath
|
7 |
+
|
8 |
+
# Directory to save the frames
|
9 |
+
output_dir = 'data/output/extracted-frames'
|
10 |
+
os.makedirs(output_dir, exist_ok=True)
|
11 |
+
|
12 |
+
# Open the video file
|
13 |
+
video_capture = cv2.VideoCapture(video_path)
|
14 |
+
|
15 |
+
# Check if the video was opened successfully
|
16 |
+
if not video_capture.isOpened():
|
17 |
+
print(f"Error: Could not open video file {video_path}")
|
18 |
+
else:
|
19 |
+
print(f"Successfully opened video file {video_path}")
|
20 |
+
|
21 |
+
# Frame index
|
22 |
+
frame_index = 0
|
23 |
+
|
24 |
+
while True:
|
25 |
+
# Read the next frame from the video
|
26 |
+
success, frame = video_capture.read()
|
27 |
+
|
28 |
+
# If there are no more frames, break the loop
|
29 |
+
if not success:
|
30 |
+
print("No more frames to read or an error occurred.")
|
31 |
+
break
|
32 |
+
|
33 |
+
# Construct the filename for the frame
|
34 |
+
frame_filename = os.path.join(output_dir, f'frame_{frame_index:04d}.png')
|
35 |
+
|
36 |
+
# Save the current frame as an image file
|
37 |
+
cv2.imwrite(frame_filename, frame)
|
38 |
+
|
39 |
+
# Print the saved frame information
|
40 |
+
print(f'Saved {frame_filename}')
|
41 |
+
|
42 |
+
# Increment the frame index
|
43 |
+
frame_index += 1
|
44 |
+
|
45 |
+
# Release the video capture object
|
46 |
+
video_capture.release()
|
47 |
+
return output_dir
|
48 |
+
|
49 |
+
print('All frames extracted.')
|
get_every_fram_path.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
def getEveryFramPath(directoryPath):
|
4 |
+
# Define the directory path
|
5 |
+
directory_path = directoryPath
|
6 |
+
|
7 |
+
# Get the list of all file paths
|
8 |
+
file_paths = []
|
9 |
+
for root, directories, files in os.walk(directory_path):
|
10 |
+
for filename in files:
|
11 |
+
file_paths.append(os.path.join(root, filename))
|
12 |
+
|
13 |
+
# Print the list of file paths
|
14 |
+
print(file_paths)
|
15 |
+
return file_paths
|
grapher.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
import re
|
3 |
+
import numpy as np
|
4 |
+
from collections import defaultdict
|
5 |
+
|
6 |
+
|
7 |
+
def createGraph(resultPath):
|
8 |
+
# Initialize lists to store emotions sequentially
|
9 |
+
emotions_list = []
|
10 |
+
emotion_counts = defaultdict(int)
|
11 |
+
emotion_scores = defaultdict(float)
|
12 |
+
|
13 |
+
# Define a regular expression pattern to match the emotion and score
|
14 |
+
pattern = re.compile(r"'emotion': '(\w+)', 'score': ([\d\.]+)")
|
15 |
+
|
16 |
+
# Read and parse the file
|
17 |
+
with open(resultPath, 'r') as file:
|
18 |
+
for line in file:
|
19 |
+
match = pattern.search(line)
|
20 |
+
if match:
|
21 |
+
emotion = match.group(1)
|
22 |
+
score = float(match.group(2))
|
23 |
+
emotions_list.append(emotion)
|
24 |
+
emotion_counts[emotion] += 1
|
25 |
+
emotion_scores[emotion] += score
|
26 |
+
else:
|
27 |
+
print(f"Skipping malformed line: {line.strip()}")
|
28 |
+
|
29 |
+
# Group emotions into positive, neutral, and negative categories
|
30 |
+
emotion_group_map = {
|
31 |
+
'happy': 'Positive',
|
32 |
+
'surprise': 'Positive', # Positive emotions
|
33 |
+
'neutral': 'Neutral', # Neutral emotions
|
34 |
+
'sad': 'Negative',
|
35 |
+
'angry': 'Negative',
|
36 |
+
'fear': 'Negative',
|
37 |
+
'disgust': 'Negative' # Negative emotions
|
38 |
+
}
|
39 |
+
|
40 |
+
# Aggregate counts for positive, neutral, and negative categories
|
41 |
+
grouped_counts = defaultdict(int)
|
42 |
+
for emotion in emotions_list:
|
43 |
+
grouped_counts[emotion_group_map[emotion]] += 1
|
44 |
+
|
45 |
+
# Define the categories and their counts
|
46 |
+
categories = ['Positive', 'Neutral', 'Negative']
|
47 |
+
counts = [grouped_counts[category] for category in categories]
|
48 |
+
|
49 |
+
# **Figure 1: Bar Chart for Positive, Neutral, and Negative Emotions**
|
50 |
+
plt.figure(figsize=(8, 6))
|
51 |
+
plt.bar(categories, counts, color=['green', 'grey', 'red'], alpha=0.7)
|
52 |
+
plt.xlabel('Emotion Group')
|
53 |
+
plt.ylabel('Count')
|
54 |
+
plt.title('Distribution of Positive, Neutral, and Negative Emotions')
|
55 |
+
plt.grid(True)
|
56 |
+
|
57 |
+
# Save the bar plot
|
58 |
+
plt.savefig('data/output/emotion_bar_plot.png')
|
59 |
+
|
60 |
+
# **Figure 2: Stem Plot (unchanged from previous version)**
|
61 |
+
emotion_values = [1 if emotion_group_map[e] == 'Positive' else
|
62 |
+
0 if emotion_group_map[e] == 'Neutral' else
|
63 |
+
-1 for e in emotions_list]
|
64 |
+
|
65 |
+
# Prepare x-axis values (line numbers)
|
66 |
+
line_numbers = np.arange(1, len(emotion_values) + 1)
|
67 |
+
|
68 |
+
plt.figure(figsize=(12, 6))
|
69 |
+
plt.plot(line_numbers, emotion_values, color='blue', linewidth=2, linestyle='-', marker='o', alpha=0.7)
|
70 |
+
|
71 |
+
for i, emotion in enumerate(emotions_list):
|
72 |
+
if emotion_group_map[emotion] == 'Positive':
|
73 |
+
plt.axvspan(i + 0.5, i + 1.5, color='green', alpha=0.3)
|
74 |
+
elif emotion_group_map[emotion] == 'Neutral':
|
75 |
+
plt.axvspan(i + 0.5, i + 1.5, color='grey', alpha=0.3)
|
76 |
+
elif emotion_group_map[emotion] == 'Negative':
|
77 |
+
plt.axvspan(i + 0.5, i + 1.5, color='red', alpha=0.3)
|
78 |
+
|
79 |
+
plt.xlabel('Line Number')
|
80 |
+
plt.ylabel('Emotion Group')
|
81 |
+
plt.title('Emotion Type Across the File (Stem Plot)')
|
82 |
+
plt.ylim([-2, 2])
|
83 |
+
plt.grid(True)
|
84 |
+
plt.yticks([-1, 0, 1], ['Negative', 'Neutral', 'Positive'])
|
85 |
+
|
86 |
+
# Save the stem plot
|
87 |
+
plt.savefig('data/output/emotion_stem_plot.png')
|
88 |
+
|
89 |
+
# **Figure 3: Combination Bar and Line Chart for Counts and Scores (unchanged)**
|
90 |
+
emotions = list(emotion_counts.keys())
|
91 |
+
counts = [emotion_counts[e] for e in emotions]
|
92 |
+
average_scores = [emotion_scores[e] / emotion_counts[e] for e in emotions]
|
93 |
+
|
94 |
+
fig, ax1 = plt.subplots()
|
95 |
+
|
96 |
+
ax1.bar(emotions, counts, color='b', alpha=0.7)
|
97 |
+
ax1.set_xlabel('Emotion')
|
98 |
+
ax1.set_ylabel('Count', color='b')
|
99 |
+
ax1.tick_params(axis='y', labelcolor='b')
|
100 |
+
|
101 |
+
ax2 = ax1.twinx()
|
102 |
+
ax2.plot(emotions, average_scores, color='r', marker='o')
|
103 |
+
ax2.set_ylabel('Average Score', color='r')
|
104 |
+
ax2.tick_params(axis='y', labelcolor='r')
|
105 |
+
|
106 |
+
plt.title('Emotion Distribution and Average Scores')
|
107 |
+
plt.savefig('data/output/emotionAVG.png')
|
main_emotion_classifier.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from keras.models import load_model
|
4 |
+
from utils.datasets import get_labels
|
5 |
+
from utils.inference import detect_faces, apply_offsets, load_detection_model, load_image
|
6 |
+
from utils.preprocessor import preprocess_input
|
7 |
+
|
8 |
+
def most_frequent(List):
|
9 |
+
return max(set(List), key=List.count)
|
10 |
+
|
11 |
+
def get_most_frequent_emotion(dict_):
|
12 |
+
emotions = []
|
13 |
+
for frame_nmr in dict_.keys():
|
14 |
+
for face_nmr in dict_[frame_nmr].keys():
|
15 |
+
emotions.append(dict_[frame_nmr][face_nmr]['emotion'])
|
16 |
+
return most_frequent(emotions)
|
17 |
+
|
18 |
+
def process(imagePaths, output_filename='data/output/results.txt'):
|
19 |
+
detection_model_path = 'detection_models/haarcascade_frontalface_default.xml'
|
20 |
+
emotion_model_path = 'emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
|
21 |
+
emotion_labels = get_labels('fer2013')
|
22 |
+
emotion_offsets = (0, 0)
|
23 |
+
|
24 |
+
face_detection = load_detection_model(detection_model_path)
|
25 |
+
emotion_classifier = load_model(emotion_model_path, compile=False)
|
26 |
+
emotion_target_size = emotion_classifier.input_shape[1:3]
|
27 |
+
|
28 |
+
output = {}
|
29 |
+
|
30 |
+
for idx, image_path in enumerate(imagePaths):
|
31 |
+
gray_image = load_image(image_path, grayscale=True)
|
32 |
+
gray_image = np.squeeze(gray_image)
|
33 |
+
gray_image = gray_image.astype('uint8')
|
34 |
+
|
35 |
+
faces = detect_faces(face_detection, gray_image)
|
36 |
+
|
37 |
+
tmp = {}
|
38 |
+
for face_coordinates in faces:
|
39 |
+
face_key = tuple(face_coordinates)
|
40 |
+
|
41 |
+
x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
|
42 |
+
gray_face = gray_image[y1:y2, x1:x2]
|
43 |
+
|
44 |
+
try:
|
45 |
+
gray_face = cv2.resize(gray_face, (emotion_target_size))
|
46 |
+
except:
|
47 |
+
continue
|
48 |
+
|
49 |
+
gray_face = preprocess_input(gray_face, True)
|
50 |
+
gray_face = np.expand_dims(gray_face, 0)
|
51 |
+
gray_face = np.expand_dims(gray_face, -1)
|
52 |
+
emotion_prediction = emotion_classifier.predict(gray_face)
|
53 |
+
emotion_label_arg = np.argmax(emotion_prediction)
|
54 |
+
emotion_text = emotion_labels[emotion_label_arg]
|
55 |
+
|
56 |
+
tmp[face_key] = {'emotion': emotion_text, 'score': float(np.max(emotion_prediction))}
|
57 |
+
|
58 |
+
output[image_path] = tmp
|
59 |
+
|
60 |
+
# Save results to a text file
|
61 |
+
with open(output_filename, 'w') as file:
|
62 |
+
for image_path, faces_info in output.items():
|
63 |
+
file.write(f"{image_path}\n")
|
64 |
+
for face_key, info in faces_info.items():
|
65 |
+
file.write(f" {face_key}: {info}\n")
|
66 |
+
|
67 |
+
most_frequent_emotion = get_most_frequent_emotion(output)
|
68 |
+
return output, most_frequent_emotion
|
69 |
+
|
70 |
+
# This function can be used for processing a single image
|
71 |
+
def process_single_image(image):
|
72 |
+
detection_model_path = 'detection_models/haarcascade_frontalface_default.xml'
|
73 |
+
emotion_model_path = 'emotion_models/fer2013_mini_XCEPTION.102-0.66.hdf5'
|
74 |
+
emotion_labels = get_labels('fer2013')
|
75 |
+
emotion_offsets = (0, 0)
|
76 |
+
|
77 |
+
face_detection = load_detection_model(detection_model_path)
|
78 |
+
emotion_classifier = load_model(emotion_model_path, compile=False)
|
79 |
+
emotion_target_size = emotion_classifier.input_shape[1:3]
|
80 |
+
|
81 |
+
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
82 |
+
faces = detect_faces(face_detection, gray_image)
|
83 |
+
|
84 |
+
for face_coordinates in faces:
|
85 |
+
x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets)
|
86 |
+
gray_face = gray_image[y1:y2, x1:x2]
|
87 |
+
|
88 |
+
try:
|
89 |
+
gray_face = cv2.resize(gray_face, (emotion_target_size))
|
90 |
+
except:
|
91 |
+
continue
|
92 |
+
|
93 |
+
gray_face = preprocess_input(gray_face, True)
|
94 |
+
gray_face = np.expand_dims(gray_face, 0)
|
95 |
+
gray_face = np.expand_dims(gray_face, -1)
|
96 |
+
emotion_prediction = emotion_classifier.predict(gray_face)
|
97 |
+
emotion_label_arg = np.argmax(emotion_prediction)
|
98 |
+
emotion_text = emotion_labels[emotion_label_arg]
|
99 |
+
|
100 |
+
# Draw rectangle around face and label with predicted emotion
|
101 |
+
(x, y, w, h) = face_coordinates
|
102 |
+
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
|
103 |
+
cv2.putText(image, emotion_text, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2)
|
104 |
+
|
105 |
+
return image
|
106 |
+
|
107 |
+
if __name__ == "__main__":
|
108 |
+
# This is just for testing purposes
|
109 |
+
test_image_paths = ['path_to_test_image1.jpg', 'path_to_test_image2.jpg']
|
110 |
+
output, most_frequent_emotion = process(test_image_paths)
|
111 |
+
print(f"Most frequent emotion: {most_frequent_emotion}")
|
112 |
+
for key in output.keys():
|
113 |
+
print(f"Image: {key}")
|
114 |
+
print(output[key])
|
test-video.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ebb10ed6003e13a611f7a31d5095a58cc9491e996f4f7a416e10cc51567c740
|
3 |
+
size 3828330
|
test.png
ADDED
Git LFS Details
|
utils/__pycache__/datasets.cpython-310.pyc
ADDED
Binary file (5.07 kB). View file
|
|
utils/__pycache__/datasets.cpython-311.pyc
ADDED
Binary file (9.09 kB). View file
|
|
utils/__pycache__/inference.cpython-310.pyc
ADDED
Binary file (1.9 kB). View file
|
|
utils/__pycache__/inference.cpython-311.pyc
ADDED
Binary file (2.83 kB). View file
|
|
utils/__pycache__/preprocessor.cpython-310.pyc
ADDED
Binary file (1.06 kB). View file
|
|
utils/__pycache__/preprocessor.cpython-311.pyc
ADDED
Binary file (1.52 kB). View file
|
|
utils/datasets.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from scipy.io import loadmat
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from random import shuffle
|
5 |
+
import os
|
6 |
+
import cv2
|
7 |
+
|
8 |
+
|
9 |
+
class DataManager(object):
|
10 |
+
"""Class for loading fer2013 emotion classification dataset or
|
11 |
+
imdb gender classification dataset."""
|
12 |
+
def __init__(self, dataset_name='imdb',
|
13 |
+
dataset_path=None, image_size=(48, 48)):
|
14 |
+
|
15 |
+
self.dataset_name = dataset_name
|
16 |
+
self.dataset_path = dataset_path
|
17 |
+
self.image_size = image_size
|
18 |
+
if self.dataset_path is not None:
|
19 |
+
self.dataset_path = dataset_path
|
20 |
+
elif self.dataset_name == 'imdb':
|
21 |
+
self.dataset_path = '../datasets/imdb_crop/imdb.mat'
|
22 |
+
elif self.dataset_name == 'fer2013':
|
23 |
+
self.dataset_path = '../datasets/fer2013/fer2013.csv'
|
24 |
+
elif self.dataset_name == 'KDEF':
|
25 |
+
self.dataset_path = '../datasets/KDEF/'
|
26 |
+
else:
|
27 |
+
raise Exception(
|
28 |
+
'Incorrect dataset name, please input imdb or fer2013')
|
29 |
+
|
30 |
+
def get_data(self):
|
31 |
+
if self.dataset_name == 'imdb':
|
32 |
+
ground_truth_data = self._load_imdb()
|
33 |
+
elif self.dataset_name == 'fer2013':
|
34 |
+
ground_truth_data = self._load_fer2013()
|
35 |
+
elif self.dataset_name == 'KDEF':
|
36 |
+
ground_truth_data = self._load_KDEF()
|
37 |
+
return ground_truth_data
|
38 |
+
|
39 |
+
def _load_imdb(self):
|
40 |
+
face_score_treshold = 3
|
41 |
+
dataset = loadmat(self.dataset_path)
|
42 |
+
image_names_array = dataset['imdb']['full_path'][0, 0][0]
|
43 |
+
gender_classes = dataset['imdb']['gender'][0, 0][0]
|
44 |
+
face_score = dataset['imdb']['face_score'][0, 0][0]
|
45 |
+
second_face_score = dataset['imdb']['second_face_score'][0, 0][0]
|
46 |
+
face_score_mask = face_score > face_score_treshold
|
47 |
+
second_face_score_mask = np.isnan(second_face_score)
|
48 |
+
unknown_gender_mask = np.logical_not(np.isnan(gender_classes))
|
49 |
+
mask = np.logical_and(face_score_mask, second_face_score_mask)
|
50 |
+
mask = np.logical_and(mask, unknown_gender_mask)
|
51 |
+
image_names_array = image_names_array[mask]
|
52 |
+
gender_classes = gender_classes[mask].tolist()
|
53 |
+
image_names = []
|
54 |
+
for image_name_arg in range(image_names_array.shape[0]):
|
55 |
+
image_name = image_names_array[image_name_arg][0]
|
56 |
+
image_names.append(image_name)
|
57 |
+
return dict(zip(image_names, gender_classes))
|
58 |
+
|
59 |
+
def _load_fer2013(self):
|
60 |
+
data = pd.read_csv(self.dataset_path)
|
61 |
+
pixels = data['pixels'].tolist()
|
62 |
+
width, height = 48, 48
|
63 |
+
faces = []
|
64 |
+
for pixel_sequence in pixels:
|
65 |
+
face = [int(pixel) for pixel in pixel_sequence.split(' ')]
|
66 |
+
face = np.asarray(face).reshape(width, height)
|
67 |
+
face = cv2.resize(face.astype('uint8'), self.image_size)
|
68 |
+
faces.append(face.astype('float32'))
|
69 |
+
faces = np.asarray(faces)
|
70 |
+
faces = np.expand_dims(faces, -1)
|
71 |
+
emotions = pd.get_dummies(data['emotion']).as_matrix()
|
72 |
+
return faces, emotions
|
73 |
+
|
74 |
+
def _load_KDEF(self):
|
75 |
+
class_to_arg = get_class_to_arg(self.dataset_name)
|
76 |
+
num_classes = len(class_to_arg)
|
77 |
+
|
78 |
+
file_paths = []
|
79 |
+
for folder, subfolders, filenames in os.walk(self.dataset_path):
|
80 |
+
for filename in filenames:
|
81 |
+
if filename.lower().endswith(('.jpg')):
|
82 |
+
file_paths.append(os.path.join(folder, filename))
|
83 |
+
|
84 |
+
num_faces = len(file_paths)
|
85 |
+
y_size, x_size = self.image_size
|
86 |
+
faces = np.zeros(shape=(num_faces, y_size, x_size))
|
87 |
+
emotions = np.zeros(shape=(num_faces, num_classes))
|
88 |
+
for file_arg, file_path in enumerate(file_paths):
|
89 |
+
image_array = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)
|
90 |
+
image_array = cv2.resize(image_array, (y_size, x_size))
|
91 |
+
faces[file_arg] = image_array
|
92 |
+
file_basename = os.path.basename(file_path)
|
93 |
+
file_emotion = file_basename[4:6]
|
94 |
+
# there are two file names in the dataset
|
95 |
+
# that don't match the given classes
|
96 |
+
try:
|
97 |
+
emotion_arg = class_to_arg[file_emotion]
|
98 |
+
except:
|
99 |
+
continue
|
100 |
+
emotions[file_arg, emotion_arg] = 1
|
101 |
+
faces = np.expand_dims(faces, -1)
|
102 |
+
return faces, emotions
|
103 |
+
|
104 |
+
|
105 |
+
def get_labels(dataset_name):
|
106 |
+
if dataset_name == 'fer2013':
|
107 |
+
return {0: 'angry', 1: 'disgust', 2: 'fear', 3: 'happy',
|
108 |
+
4: 'sad', 5: 'surprise', 6: 'neutral'}
|
109 |
+
elif dataset_name == 'imdb':
|
110 |
+
return {0: 'woman', 1: 'man'}
|
111 |
+
elif dataset_name == 'KDEF':
|
112 |
+
return {0: 'AN', 1: 'DI', 2: 'AF', 3: 'HA', 4: 'SA', 5: 'SU', 6: 'NE'}
|
113 |
+
else:
|
114 |
+
raise Exception('Invalid dataset name')
|
115 |
+
|
116 |
+
|
117 |
+
def get_class_to_arg(dataset_name='fer2013'):
|
118 |
+
if dataset_name == 'fer2013':
|
119 |
+
return {'angry': 0, 'disgust': 1, 'fear': 2, 'happy': 3, 'sad': 4,
|
120 |
+
'surprise': 5, 'neutral': 6}
|
121 |
+
elif dataset_name == 'imdb':
|
122 |
+
return {'woman': 0, 'man': 1}
|
123 |
+
elif dataset_name == 'KDEF':
|
124 |
+
return {'AN': 0, 'DI': 1, 'AF': 2, 'HA': 3, 'SA': 4, 'SU': 5, 'NE': 6}
|
125 |
+
else:
|
126 |
+
raise Exception('Invalid dataset name')
|
127 |
+
|
128 |
+
|
129 |
+
def split_imdb_data(ground_truth_data, validation_split=.2, do_shuffle=False):
|
130 |
+
ground_truth_keys = sorted(ground_truth_data.keys())
|
131 |
+
if do_shuffle is not False:
|
132 |
+
shuffle(ground_truth_keys)
|
133 |
+
training_split = 1 - validation_split
|
134 |
+
num_train = int(training_split * len(ground_truth_keys))
|
135 |
+
train_keys = ground_truth_keys[:num_train]
|
136 |
+
validation_keys = ground_truth_keys[num_train:]
|
137 |
+
return train_keys, validation_keys
|
138 |
+
|
139 |
+
|
140 |
+
def split_data(x, y, validation_split=.2):
|
141 |
+
num_samples = len(x)
|
142 |
+
num_train_samples = int((1 - validation_split)*num_samples)
|
143 |
+
train_x = x[:num_train_samples]
|
144 |
+
train_y = y[:num_train_samples]
|
145 |
+
val_x = x[num_train_samples:]
|
146 |
+
val_y = y[num_train_samples:]
|
147 |
+
train_data = (train_x, train_y)
|
148 |
+
val_data = (val_x, val_y)
|
149 |
+
return train_data, val_data
|
utils/inference.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import numpy as np
|
4 |
+
from tensorflow.keras.utils import load_img, img_to_array
|
5 |
+
|
6 |
+
def load_image(image_path, grayscale=False, target_size=None):
|
7 |
+
color_mode = 'grayscale' if grayscale else 'rgb'
|
8 |
+
pil_image = load_img(image_path, color_mode=color_mode, target_size=target_size)
|
9 |
+
return img_to_array(pil_image)
|
10 |
+
|
11 |
+
def load_detection_model(model_path):
|
12 |
+
detection_model = cv2.CascadeClassifier(model_path)
|
13 |
+
return detection_model
|
14 |
+
|
15 |
+
def detect_faces(detection_model, gray_image_array):
|
16 |
+
return detection_model.detectMultiScale(gray_image_array, 1.3, 5)
|
17 |
+
|
18 |
+
def draw_bounding_box(face_coordinates, image_array, color):
|
19 |
+
x, y, w, h = face_coordinates
|
20 |
+
cv2.rectangle(image_array, (x, y), (x + w, y + h), color, 2)
|
21 |
+
|
22 |
+
def apply_offsets(face_coordinates, offsets):
|
23 |
+
x, y, width, height = face_coordinates
|
24 |
+
x_off, y_off = offsets
|
25 |
+
return (x - x_off, x + width + x_off, y - y_off, y + height + y_off)
|
26 |
+
|
27 |
+
def draw_text(coordinates, image_array, text, color, x_offset=0, y_offset=0,
|
28 |
+
font_scale=2, thickness=2):
|
29 |
+
x, y = coordinates[:2]
|
30 |
+
cv2.putText(image_array, text, (x + x_offset, y + y_offset),
|
31 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
32 |
+
font_scale, color, thickness, cv2.LINE_AA)
|
33 |
+
|
34 |
+
def get_colors(num_classes):
|
35 |
+
colors = plt.cm.hsv(np.linspace(0, 1, num_classes)).tolist()
|
36 |
+
colors = np.asarray(colors) * 255
|
37 |
+
return colors
|
utils/preprocessor.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from imageio import imread
|
3 |
+
from skimage.transform import resize as imresize
|
4 |
+
|
5 |
+
def preprocess_input(x, v2=True):
|
6 |
+
x = x.astype('float32')
|
7 |
+
x = x / 255.0
|
8 |
+
if v2:
|
9 |
+
x = x - 0.5
|
10 |
+
x = x * 2.0
|
11 |
+
return x
|
12 |
+
|
13 |
+
|
14 |
+
def _imread(image_name):
|
15 |
+
return imread(image_name)
|
16 |
+
|
17 |
+
|
18 |
+
def _imresize(image_array, size):
|
19 |
+
return imresize(image_array, size)
|
20 |
+
|
21 |
+
|
22 |
+
def to_categorical(integer_classes, num_classes=2):
|
23 |
+
integer_classes = np.asarray(integer_classes, dtype='int')
|
24 |
+
num_samples = integer_classes.shape[0]
|
25 |
+
categorical = np.zeros((num_samples, num_classes))
|
26 |
+
categorical[np.arange(num_samples), integer_classes] = 1
|
27 |
+
return categorical
|