File size: 18,843 Bytes
bdafe83
 
 
 
 
 
 
 
 
 
 
53709ed
 
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53709ed
 
bdafe83
53709ed
bdafe83
 
 
 
53709ed
 
bdafe83
53709ed
bdafe83
 
 
 
53709ed
bdafe83
53709ed
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53709ed
 
bdafe83
 
 
 
 
 
 
 
 
 
53709ed
 
 
 
 
 
 
 
 
 
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53709ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdafe83
53709ed
 
 
bdafe83
 
 
53709ed
 
 
 
 
 
 
 
bdafe83
53709ed
 
 
bdafe83
 
53709ed
 
bdafe83
53709ed
 
bdafe83
 
53709ed
 
 
 
bdafe83
53709ed
bdafe83
53709ed
bdafe83
 
53709ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdafe83
 
53709ed
 
bdafe83
 
 
 
 
53709ed
bdafe83
 
 
53709ed
 
 
 
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53709ed
bdafe83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
import json
import os
import os.path as osp
import random
import re
from collections import Counter
from typing import Union, List, Dict, Tuple

import numpy as np
import pandas as pd

from agentreview import const
from agentreview.utility.general_utils import check_cwd, set_seed


def generate_num_papers_to_accept(n, batch_number, shuffle=True):
    # Calculate the base value (minimum value in the array)
    base_value = int(n // batch_number)

    # Calculate how many elements need to be base_value + 1
    remainder = int(n % batch_number)

    # Initialize the array
    array = []

    # Add the elements to the array
    for i in range(batch_number):
        if i < remainder:
            array.append(base_value + 1)
        else:
            array.append(base_value)

    if shuffle:
        random.shuffle(array)

    return array


def get_papers_accepted_by_llm(llm_ac_decisions, acceptance_rate: float) -> list:
    papers_accepted_by_llm = []

    num_papers = sum([len(batch) for batch in llm_ac_decisions])

    if num_papers == 0:
        raise ValueError("No papers found in batch")

    num_papers_to_accept = generate_num_papers_to_accept(n=acceptance_rate * num_papers,
                                                         batch_number=len(llm_ac_decisions))

    for idx_batch, batch in enumerate(llm_ac_decisions):
        tups = sorted([(paper_id, rank) for paper_id, rank in batch.items()], key=lambda x: x[1], reverse=False)

        paper_ids = [int(paper_id) for paper_id, rank in tups]

        papers_accepted_by_llm += paper_ids[:num_papers_to_accept[idx_batch]]

    return papers_accepted_by_llm


def get_paper_decision_mapping(data_dir: str, conference: str, verbose: bool = False):
    paper_id2decision, paper_decision2ids = {}, {}
    path_paper_id2decision = os.path.join(data_dir, conference, "id2decision.json")
    path_paper_decision2ids = os.path.join(data_dir, conference, "decision2ids.json")

    if osp.exists(path_paper_id2decision) and osp.exists(path_paper_decision2ids):
        paper_id2decision = json.load(open(path_paper_id2decision, 'r', encoding='utf-8'))
        paper_decision2ids = json.load(open(path_paper_decision2ids, 'r', encoding='utf-8'))

        paper_id2decision = {int(k): v for k, v in paper_id2decision.items()}

        if verbose:
            print(f"Loaded {len(paper_id2decision)} paper IDs to decisions from {path_paper_id2decision}")

    else:

        PAPER_DECISIONS = get_all_paper_decisions(conference)

        for paper_decision in PAPER_DECISIONS:

            paper_ids = os.listdir(os.path.join(data_dir, conference, "notes", paper_decision))
            paper_ids = sorted(
                [int(paper_id.split(".json")[0]) for paper_id in paper_ids if paper_id.endswith(".json")])

            paper_id2decision.update({paper_id: paper_decision for paper_id in paper_ids})
            paper_decision2ids[paper_decision] = paper_ids

            if verbose:
                print(f"{paper_decision}: {len(paper_ids)} papers")

        json.dump(paper_id2decision, open(path_paper_id2decision, 'w', encoding='utf-8'), indent=2)
        json.dump(paper_decision2ids, open(path_paper_decision2ids, 'w', encoding='utf-8'), indent=2)

    return paper_id2decision, paper_decision2ids


def project_setup():
    check_cwd()
    import warnings
    import pandas as pd
    warnings.simplefilter(action='ignore', category=FutureWarning)
    pd.set_option('display.max_rows', 40)
    pd.set_option('display.max_columns', 20)
    set_seed(42)


def get_next_review_id(path: str) -> int:
    existing_review_ids = sorted([int(x.split('.json')[0].split('_')[1]) for x in os.listdir(path)])
    next_review_id = 1
    while next_review_id in existing_review_ids:
        next_review_id += 1
    print(f"Next review ID: {next_review_id}")
    return next_review_id




def filter_paper_ids_from_initial_experiments(sampled_paper_ids: List[int]):
    paper_ids_initial_experiments = json.load(open(f"outputs/paper_ids_initial_experiments.json"))
    sampled_paper_ids = set(sampled_paper_ids) - set(paper_ids_initial_experiments)
    sampled_paper_ids = sorted(list(sampled_paper_ids))
    return sampled_paper_ids


def get_paper_review_and_rebuttal_dir(reviewer_type: str, conference: str, model_name: str, paper_id: int = None):
    if reviewer_type == "NoOverallScore":
        reviewer_type = "BASELINE"

    path = f"outputs/paper_review_and_rebuttal" \
           f"/{conference}/" \
           f"{get_model_name_short(model_name)}/{reviewer_type}"

    if paper_id is not None:
        path += f"/{paper_id}"

    return path


def get_rebuttal_dir(output_dir: str,
                     paper_id: Union[str, int, None],
                     experiment_name: str,
                     model_name: str,
                     conference: str):

    path = os.path.join(output_dir, "paper_review", conference, get_model_name_short(model_name),
            experiment_name)

    if paper_id is not None:
        path += f"/{paper_id}"

    return path


def print_colored(text, color='red'):

    # Dictionary of ANSI color codes for terminal
    foreground_colors = {
        'black': 30,
        'red': 31,
        'green': 32,
        'yellow': 33,
        'blue': 34,
        'magenta': 35,
        'cyan': 36,
        'white': 37,
    }
    try:

        # get_ipython is specific to Jupyter and IPython.
        # We use this to decide whether we are running a Jupyter notebook or not.
        get_ipython
        print(text)  # Plain text in Jupyter
    except:
        # If not Jupyter, print with color codes
        color_code = foreground_colors.get(color, 31)  # Default to red if color not found
        print(f"\033[{color_code}m{text}\033[0m")


def get_ac_decision_path(output_dir: str, conference: str, model_name: str, ac_scoring_method: str, experiment_name:
str):
    ac_decision_dir = os.path.join(output_dir, "decisions", conference,
                                   get_model_name_short(model_name),
                                   f"decisions_thru_{ac_scoring_method}")
    os.makedirs(ac_decision_dir, exist_ok=True)

    if isinstance(experiment_name, str):
        ac_decision_dir += f"/decision_{experiment_name}.json"

    return ac_decision_dir


def load_metareview(paper_id: int, **kwargs):
    rebuttal_dir = get_rebuttal_dir(paper_id=paper_id, **kwargs)

    path = f"{rebuttal_dir}/{paper_id}.json"

    if not osp.exists(path):
        print(f"Not Found: {path}")
        return None

    try:
        reviews = json.load(open(path))

        metareview = reviews["messages"][-1]
        if not metareview["agent_name"].startswith("AC"):
            return None

        return metareview['content']

    except FileNotFoundError:
        return None


def get_reviewer_type_from_profile(profile: dict):
    """
    Get a short name for the reviewer's type from the reviewer's  experiment profile.
    
    
    Input:
        {
            'is_benign': True,
            'is_knowledgeable': None,
            'is_responsible': None,
            'provides_numeric_rating': True
        }

    Output:
        "benign"


    Input:
        {
            'is_benign': False,
            'is_knowledgeable': None,
            'is_responsible': None,
            'provides_numeric_rating': True
        }

    Output:
        "malicious"


    Input:
        {
            'is_benign': None,
            'is_knowledgeable': None,
            'is_responsible': None,
            'provides_numeric_rating': True
        }

    Output:
        "default"

    """

    reviewer_attributes = Counter([profile[k] for k in ["is_benign", 'is_knowledgeable', 'is_responsible']])

    assert (reviewer_attributes[True] <= 1 and reviewer_attributes[False] <= 1) and reviewer_attributes[None] >= 2, \
        ("A reviewer can only have 0 or 1 of "
         "these "
         "properties profile to True or False")

    if profile['is_benign']:
        return "benign"
    elif profile['is_benign'] == False:
        # NOTE: We cannot use `not profile['is_benign']` as we need to consider the case where `profile['is_benign']`
        # is
        # None
        return "malicious"

    elif profile['is_knowledgeable']:
        return "knowledgeable"

    elif profile['is_knowledgeable'] == False:
        # Same as above
        return "unknowledgeable"

    elif profile['is_responsible']:
        return "responsible"
    elif profile['is_responsible'] == False:
        # Same as above
        return "irresponsible"

    elif profile['provides_numeric_rating'] == False:
        return "NoOverallScore"

    elif profile.get('knows_authors') == "famous":
        return "authors_are_famous"

    elif profile.get('knows_authors') == "unfamous":
        return "authors_are_unfamous"

    else:
        return "BASELINE"


def get_ac_type_from_profile(profile: dict):
    return None


# def get_ac_type_from_profile(profile: dict):
#     """
#     Get a short name for the area chair's type from their profile in the experiment setting.
#
#     """

def format_metareviews(metareviews: List[str], paper_ids: List[int]):
    metareviews_formatted = ""

    for paper_id, metareview in zip(paper_ids, metareviews):
        metareview = re.sub('\n+', '\n', metareview)
        metareviews_formatted += (f"Paper ID: {paper_id}\nMetareview: "
                                  f"{metareview}\n{'-' * 5}\n")

    return metareviews_formatted


def get_all_paper_decisions(conference: str) -> List[str]:
    if conference in ["ICLR2019", "ICLR2018"]:
        return const.PAPER_DECISIONS_ICLR2019

    else:
        return const.PAPER_DECISIONS


def get_paper_ids_of_known_authors(conference: str, num_papers: int, decision: str = None):
    paper_id2decision, paper_decision2ids = get_paper_decision_mapping(conference)
    paper_ids_of_famous_authors = paper_decision2ids[decision][:num_papers]
    return paper_ids_of_famous_authors


def get_experiment_names(conference: str = "ICLR2023"):
    experiment_names = ["BASELINE"]

    # The following are settings for reviewer types
    # Varying reviewer commitment
    experiment_names += ["responsible_Rx1"]
    experiment_names += ["irresponsible_Rx1"]

    # Varying reviewer intention
    experiment_names += ["benign_Rx1"]
    experiment_names += ["malicious_Rx1"]

    # Varying reviewer knowledgeability
    experiment_names += ["knowledgeable_Rx1"]
    experiment_names += ["unknowledgeable_Rx1"]

    # The following are settings for AC types
    experiment_names += ["conformist_ACx1", "authoritarian_ACx1", "inclusive_ACx1"]

    # Enable these for ICLR2023
    if conference == "ICLR2023":
        experiment_names += ["no_rebuttal"]
        experiment_names += ["no_overall_score"]
        experiment_names += ["malicious_Rx2"]
        experiment_names += ["malicious_Rx3"]
        experiment_names += ["irresponsible_Rx2"]
        experiment_names += ["irresponsible_Rx3"]
        experiment_names += ["authors_are_famous_Rx1"]
        experiment_names += ["authors_are_famous_Rx2"]
        experiment_names += ["authors_are_famous_Rx3"]

    return experiment_names


def load_llm_ac_decisions_as_array(
    output_dir: str,
    experiment_name: str,
    ac_scoring_method: str,
    acceptance_rate: float,
    conference: str,
    model_name: str,
    num_papers_per_area_chair: int
) -> Tuple[np.ndarray, np.ndarray]:
    """Loads and processes GPT-4 generated area chair (AC) decisions for an experiment.

    Args:
        experiment_name (str): Name of the experiment.
        ac_scoring_method (str): Method used for AC scoring ('ranking' or 'recommendation').
        acceptance_rate (float): Acceptance rate for the conference.
        conference (str): Name of the conference.
        model_name (str): Model name used to generate AC decisions.
        num_papers_per_area_chair (int): Number of papers assigned to each area chair.

    Returns:
        Tuple[np.ndarray, np.ndarray]: An array of decisions (True for accept, False for reject)
            and an array of paper IDs in the order processed.

    Raises:
        NotImplementedError: If `ac_scoring_method` is not 'ranking' or 'recommendation'.
    """
    print("=" * 30)
    print(f"Experiment Name: {experiment_name}")

    llm_ac_decisions = load_llm_ac_decisions(
        output_dir=output_dir,
        conference=conference,
        model_name=model_name,
        ac_scoring_method=ac_scoring_method,
        experiment_name=experiment_name,
        num_papers_per_area_chair=num_papers_per_area_chair
    )

    paper_ids = sorted(
        int(paper_id) for batch in llm_ac_decisions for paper_id in batch
    )

    if ac_scoring_method == "ranking":
        if len(paper_ids) != len(set(paper_ids)):
            raise ValueError(f"Duplicate paper_ids found in the AC decisions: {Counter(paper_ids)}")

        papers_accepted_by_llm = get_papers_accepted_by_llm(llm_ac_decisions, acceptance_rate)
        decisions_llm = np.array([paper_id in papers_accepted_by_llm for paper_id in paper_ids])

    elif ac_scoring_method == "recommendation":
        llm_ac_decisions_flat = {int(k): v for batch in llm_ac_decisions for k, v in batch.items()}
        decisions_llm = np.array(
            [llm_ac_decisions_flat[paper_id].startswith("Accept") for paper_id in paper_ids]
        )
    else:
        raise NotImplementedError(f"Scoring method '{ac_scoring_method}' not implemented.")

    return decisions_llm, np.array(paper_ids)


def load_llm_ac_decisions(
    output_dir: str,
    conference: str,
    model_name: str,
    ac_scoring_method: str,
    experiment_name: str,
    num_papers_per_area_chair: int
) -> List[Dict[str, str]]:
    """Loads GPT-4 generated area chair (AC) decisions from a specified path.

    Args:
        conference (str): Name of the conference.
        model_name (str): Model name used to generate AC decisions.
        ac_scoring_method (str): Method used for AC scoring ('ranking' or 'recommendation').
        experiment_name (str): Name of the experiment.
        num_papers_per_area_chair (int): Number of papers assigned to each area chair.

    Returns:
        List[Dict[str, str]]: List of batches, where each batch contains paper ID and decision.

    Raises:
        AssertionError: If a non-final batch has a paper count different from `num_papers_per_area_chair`.
    """
    path = get_ac_decision_path(
        output_dir=output_dir,
        conference=conference,
        model_name=model_name,
        ac_scoring_method=ac_scoring_method,
        experiment_name=experiment_name
    )

    if osp.exists(path):
        with open(path, 'r', encoding='utf-8') as file:
            ac_decision = json.load(file)
        print(f"Loaded {len(ac_decision)} batches of existing AC decisions from {path}")
    else:
        ac_decision = []
        print(f"No existing AC decisions found at {path}")

    ac_decision = [batch for batch in ac_decision if batch]  # Remove empty batches

    for i, batch in enumerate(ac_decision):
        if i != len(ac_decision) - 1:
            if len(batch) != num_papers_per_area_chair:
                raise AssertionError(
                    f"Batch {i} has {len(batch)} papers, expected {num_papers_per_area_chair} for non-final batches."
                )

    return ac_decision

def write_to_excel(data, file_path, sheet_name):
    """
    Write data to an Excel file.

    Parameters:
    data (pd.DataFrame): The data to write to the Excel file.
    file_path (str): The path to the Excel file.
    sheet_name (str): The name of the sheet to write to.
    """
    # Check if the file exists
    if os.path.exists(file_path):
        # If the file exists, load it
        with pd.ExcelWriter(file_path, mode='a', engine='openpyxl', if_sheet_exists='replace') as writer:
            data.to_excel(writer, sheet_name=sheet_name, index=False)
    else:
        # If the file does not exist, create it
        with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
            data.to_excel(writer, sheet_name=sheet_name, index=False)


def save_llm_ac_decisions(ac_decisions: List[dict], **kwargs):
    path = get_ac_decision_path(**kwargs)

    json.dump(ac_decisions, open(path, 'w', encoding='utf-8'), indent=2)


def get_model_name_short(name: str):
    """
    Convert long model names (e.g. `gpt-35-turbo`) to short model names (e.g. `gpt-35`)
    Args:
        name (str): long model name

    Returns:
        str: short model name
    """

    assert name.startswith('gpt-')
    return '-'.join(name.split('-')[:2])


def get_reviewer_types_from_experiment_name(experiment_name: str):
    if experiment_name in ["BASELINE", 'inclusive_ACx1', 'authoritarian_ACx1', 'conformist_ACx1',
                           "no_rebuttal"]:
        reviewer_types = ["BASELINE", "BASELINE", "BASELINE"]

    elif experiment_name == "benign_Rx1":

        reviewer_types = ["benign", "BASELINE", "BASELINE"]

    elif experiment_name == "benign_Rx2":

        reviewer_types = ["benign", "benign", "BASELINE"]

    elif experiment_name == "malicious_Rx1":

        reviewer_types = ["malicious", "BASELINE", "BASELINE"]

    elif experiment_name == "malicious_Rx2":

        reviewer_types = ["malicious", "malicious", "BASELINE"]

    elif experiment_name == "malicious_Rx3":

        reviewer_types = ["malicious", "malicious", "malicious"]

    elif experiment_name == "knowledgeable_Rx1":

        reviewer_types = ["knowledgeable", "BASELINE", "BASELINE"]

    elif experiment_name == "unknowledgeable_Rx1":

        reviewer_types = ["unknowledgeable", "BASELINE", "BASELINE"]

    elif experiment_name == "responsible_Rx1":

        reviewer_types = ["responsible", "BASELINE", "BASELINE"]

    elif experiment_name == "irresponsible_Rx1":

        reviewer_types = ["irresponsible", "BASELINE", "BASELINE"]

    elif experiment_name == "irresponsible_Rx2":

        reviewer_types = ["irresponsible", "irresponsible", "BASELINE"]

    elif experiment_name == "irresponsible_Rx3":

        reviewer_types = ["irresponsible", "irresponsible", "irresponsible"]

    elif experiment_name in ["no_overall_score"]:
        reviewer_types = ["NoOverallScore", "NoOverallScore", "NoOverallScore"]

    elif experiment_name in ["authors_are_famous_Rx1", "authors_are_famous_Rx1_no_rebuttal"]:

        reviewer_types = ["authors_are_famous", "BASELINE", "BASELINE"]

    elif experiment_name in ["authors_are_famous_Rx2", "authors_are_famous_Rx2_no_rebuttal"]:

        reviewer_types = ["authors_are_famous", "authors_are_famous", "BASELINE"]

    elif experiment_name in ["authors_are_famous_Rx3", "authors_are_famous_Rx3_no_rebuttal"]:

        reviewer_types = ["authors_are_famous", "authors_are_famous", "authors_are_famous"]

    else:
        raise NotImplementedError

    return reviewer_types