|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers.models.activations import get_activation |
|
from diffusers.models.normalization import AdaGroupNorm |
|
from diffusers.models.attention_processor import SpatialNorm |
|
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear |
|
|
|
from einops import rearrange |
|
|
|
class InflatedConv3d(nn.Conv2d): |
|
def forward(self, x): |
|
video_length = x.shape[2] |
|
|
|
x = rearrange(x, "b c f h w -> (b f) c h w") |
|
x = super().forward(x) |
|
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length) |
|
|
|
return x |
|
|
|
|
|
class Upsample3D(nn.Module): |
|
"""A 2D upsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
use_conv_transpose (`bool`, default `False`): |
|
option to use a convolution transpose. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_conv_transpose = use_conv_transpose |
|
self.name = name |
|
|
|
conv = None |
|
if use_conv_transpose: |
|
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) |
|
elif use_conv: |
|
|
|
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1) |
|
|
|
|
|
if name == "conv": |
|
self.conv = conv |
|
else: |
|
self.Conv2d_0 = conv |
|
|
|
def forward(self, hidden_states, output_size=None): |
|
assert hidden_states.shape[1] == self.channels |
|
|
|
if self.use_conv_transpose: |
|
return self.conv(hidden_states) |
|
|
|
|
|
|
|
|
|
dtype = hidden_states.dtype |
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(torch.float32) |
|
|
|
|
|
if hidden_states.shape[0] >= 64: |
|
hidden_states = hidden_states.contiguous() |
|
|
|
|
|
|
|
if output_size is None: |
|
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest") |
|
else: |
|
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") |
|
|
|
|
|
if dtype == torch.bfloat16: |
|
hidden_states = hidden_states.to(dtype) |
|
|
|
|
|
if self.use_conv: |
|
if self.name == "conv": |
|
hidden_states = self.conv(hidden_states) |
|
else: |
|
hidden_states = self.Conv2d_0(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class Downsample3D(nn.Module): |
|
"""A 2D downsampling layer with an optional convolution. |
|
|
|
Parameters: |
|
channels (`int`): |
|
number of channels in the inputs and outputs. |
|
use_conv (`bool`, default `False`): |
|
option to use a convolution. |
|
out_channels (`int`, optional): |
|
number of output channels. Defaults to `channels`. |
|
padding (`int`, default `1`): |
|
padding for the convolution. |
|
""" |
|
|
|
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.padding = padding |
|
stride = 2 |
|
self.name = name |
|
|
|
if use_conv: |
|
|
|
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) |
|
|
|
|
|
if name == "conv": |
|
self.Conv2d_0 = conv |
|
self.conv = conv |
|
elif name == "Conv2d_0": |
|
self.conv = conv |
|
else: |
|
self.conv = conv |
|
|
|
def forward(self, hidden_states): |
|
assert hidden_states.shape[1] == self.channels |
|
if self.use_conv and self.padding == 0: |
|
pad = (0, 1, 0, 1) |
|
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) |
|
|
|
assert hidden_states.shape[1] == self.channels |
|
hidden_states = self.conv(hidden_states) |
|
|
|
return hidden_states |
|
|
|
class ResnetBlock3D(nn.Module): |
|
r""" |
|
A Resnet block. |
|
|
|
Parameters: |
|
in_channels (`int`): The number of channels in the input. |
|
out_channels (`int`, *optional*, default to be `None`): |
|
The number of output channels for the first conv2d layer. If None, same as `in_channels`. |
|
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. |
|
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. |
|
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. |
|
groups_out (`int`, *optional*, default to None): |
|
The number of groups to use for the second normalization layer. if set to None, same as `groups`. |
|
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. |
|
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. |
|
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. |
|
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or |
|
"ada_group" for a stronger conditioning with scale and shift. |
|
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see |
|
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. |
|
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. |
|
use_in_shortcut (`bool`, *optional*, default to `True`): |
|
If `True`, add a 1x1 nn.conv2d layer for skip-connection. |
|
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. |
|
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. |
|
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the |
|
`conv_shortcut` output. |
|
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. |
|
If None, same as `out_channels`. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
in_channels, |
|
out_channels=None, |
|
conv_shortcut=False, |
|
dropout=0.0, |
|
temb_channels=512, |
|
groups=32, |
|
groups_out=None, |
|
pre_norm=True, |
|
eps=1e-6, |
|
non_linearity="swish", |
|
skip_time_act=False, |
|
time_embedding_norm="default", |
|
kernel=None, |
|
output_scale_factor=1.0, |
|
use_in_shortcut=None, |
|
up=False, |
|
down=False, |
|
conv_shortcut_bias: bool = True, |
|
conv_2d_out_channels: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.pre_norm = pre_norm |
|
self.pre_norm = True |
|
self.in_channels = in_channels |
|
out_channels = in_channels if out_channels is None else out_channels |
|
self.out_channels = out_channels |
|
self.use_conv_shortcut = conv_shortcut |
|
self.up = up |
|
self.down = down |
|
self.output_scale_factor = output_scale_factor |
|
self.time_embedding_norm = time_embedding_norm |
|
self.skip_time_act = skip_time_act |
|
|
|
if groups_out is None: |
|
groups_out = groups |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm1 = SpatialNorm(in_channels, temb_channels) |
|
else: |
|
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) |
|
|
|
|
|
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
if temb_channels is not None: |
|
if self.time_embedding_norm == "default": |
|
self.time_emb_proj = LoRACompatibleLinear(temb_channels, out_channels) |
|
elif self.time_embedding_norm == "scale_shift": |
|
self.time_emb_proj = LoRACompatibleLinear(temb_channels, 2 * out_channels) |
|
elif self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
self.time_emb_proj = None |
|
else: |
|
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") |
|
else: |
|
self.time_emb_proj = None |
|
|
|
if self.time_embedding_norm == "ada_group": |
|
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) |
|
elif self.time_embedding_norm == "spatial": |
|
self.norm2 = SpatialNorm(out_channels, temb_channels) |
|
else: |
|
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) |
|
|
|
self.dropout = torch.nn.Dropout(dropout) |
|
conv_2d_out_channels = conv_2d_out_channels or out_channels |
|
|
|
self.conv2 = InflatedConv3d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
self.nonlinearity = get_activation(non_linearity) |
|
|
|
self.upsample = self.downsample = None |
|
if self.up: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") |
|
else: |
|
self.upsample = Upsample3D(in_channels, use_conv=False) |
|
elif self.down: |
|
if kernel == "fir": |
|
fir_kernel = (1, 3, 3, 1) |
|
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) |
|
elif kernel == "sde_vp": |
|
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) |
|
else: |
|
self.downsample = Downsample3D(in_channels, use_conv=False, padding=1, name="op") |
|
|
|
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut |
|
|
|
self.conv_shortcut = None |
|
if self.use_in_shortcut: |
|
|
|
|
|
|
|
self.conv_shortcut = InflatedConv3d( |
|
in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias |
|
) |
|
|
|
def forward(self, input_tensor, temb): |
|
hidden_states = input_tensor |
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm1(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm1(hidden_states) |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
if self.upsample is not None: |
|
|
|
if hidden_states.shape[0] >= 64: |
|
input_tensor = input_tensor.contiguous() |
|
hidden_states = hidden_states.contiguous() |
|
input_tensor = self.upsample(input_tensor) |
|
hidden_states = self.upsample(hidden_states) |
|
elif self.downsample is not None: |
|
input_tensor = self.downsample(input_tensor) |
|
hidden_states = self.downsample(hidden_states) |
|
|
|
hidden_states = self.conv1(hidden_states) |
|
|
|
|
|
|
|
|
|
if self.time_emb_proj is not None: |
|
if not self.skip_time_act: |
|
temb = self.nonlinearity(temb) |
|
temb = self.time_emb_proj(temb) |
|
|
|
|
|
|
|
|
|
|
|
temb = temb[:, :, None, None, None] |
|
|
|
|
|
if temb is not None and self.time_embedding_norm == "default": |
|
|
|
hidden_states = hidden_states + temb |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.time_embedding_norm == "ada_group" or self.time_embedding_norm == "spatial": |
|
hidden_states = self.norm2(hidden_states, temb) |
|
else: |
|
hidden_states = self.norm2(hidden_states) |
|
|
|
if temb is not None and self.time_embedding_norm == "scale_shift": |
|
scale, shift = torch.chunk(temb, 2, dim=1) |
|
hidden_states = hidden_states * (1 + scale) + shift |
|
|
|
hidden_states = self.nonlinearity(hidden_states) |
|
|
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.conv2(hidden_states) |
|
|
|
if self.conv_shortcut is not None: |
|
input_tensor = self.conv_shortcut(input_tensor) |
|
|
|
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor |
|
|
|
return output_tensor |